--- # Auto-generated fields, verify and update as needed license: apache-2.0 tags: - generated-by-script - peft # Assume PEFT adapter unless explicitly a full model repo - image-captioning # Add more specific task tags if applicable base_model: [] # <-- FIXED: Provide empty list as default to satisfy validator # - microsoft/git-base # Heuristic guess for processor, VERIFY MANUALLY # - microsoft/git-base # Heuristic guess for decoder, VERIFY MANUALLY --- # Model: ashimdahal/microsoft-git-base_microsoft-git-base This repository contains model artifacts for a run named `microsoft-git-base_microsoft-git-base`, likely a PEFT adapter. ## Training Source This model was trained as part of the project/codebase available at: https://github.com/ashimdahal/captioning_image/blob/main ## Base Model Information (Heuristic) * **Processor/Vision Encoder (Guessed):** `microsoft/git-base` * **Decoder/Language Model (Guessed):** `microsoft/git-base` **⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`microsoft-git-base_microsoft-git-base`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers. ## How to Use (Example with PEFT) ```python from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes from peft import PeftModel, PeftConfig import torch # --- Configuration --- # 1. Specify the EXACT base model identifiers used during training base_processor_id = "microsoft/git-base" # <-- Replace with correct HF ID base_model_id = "microsoft/git-base" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b) # 2. Specify the PEFT adapter repository ID (this repo) adapter_repo_id = "ashimdahal/microsoft-git-base_microsoft-git-base" # --- Load Base Model and Processor --- processor = AutoProcessor.from_pretrained(base_processor_id) # Load the base model (ensure it matches the type used for training) # Example for BLIP-2 OPT: base_model = Blip2ForConditionalGeneration.from_pretrained( base_model_id, torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs ) # Or for other model types: base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16) base_model = AutoModelForCausalLM ...... # --- Load PEFT Adapter --- # Load the adapter config and merge the adapter weights into the base model model = PeftModel.from_pretrained(base_model, adapter_repo_id) model = model.merge_and_unload() # Merge weights for inference (optional but often recommended) model.eval() # Set model to evaluation mode # --- Inference Example --- device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) image = ... # Load your image (e.g., using PIL) text = "a photo of" # Optional prompt start inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype generated_ids = model.generate(**inputs, max_new_tokens=50) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() print(f"Generated Caption: {{generated_text}}") ``` *More model-specific documentation, evaluation results, and usage examples should be added here.*