File size: 6,418 Bytes
4107277 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# -*- coding: utf-8 -*-
"""Untitled19.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/14fK8TvV3AakdmLkH1MHkYcDeFVpENGGs
"""
!pip install datasets
!pip install huggingface_hub
!huggingface-cli login
from huggingface_hub import notebook_login
notebook_login()
!pip install tensorflow
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import tensorflow as tf
from huggingface_hub import upload_folder
import os
import shap # Make sure SHAP is installed: pip install shap
# Load the dataset directly as a CSV file using pandas
data = pd.read_csv("/content/cardio_train.csv", sep=';') # Ensure the correct delimiter is used
# Rename the target column
data = data.rename(columns={'cardio': 'target'})
# Select features and target
X = data.drop(columns='target') # Features
y = data['target'] # Target variable
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Build a Keras model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(16, activation='relu', input_shape=(X_train.shape[1],))) # Input layer
model.add(tf.keras.layers.Dense(8, activation='relu')) # Hidden layer
model.add(tf.keras.layers.Dense(1, activation='sigmoid')) # Output layer for binary classification
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=1)
# Evaluate the model on the test set
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f"Accuracy of Keras model: {accuracy:.4f}")
# Make predictions on the test set
y_pred = (model.predict(X_test) > 0.5).astype("int32") # Convert probabilities to binary
# Generate the classification report
report = classification_report(y_test, y_pred)
print("\nClassification Report:\n", report)
# Save the Keras model
model.save("Cardiovascular-Disease-Detection.keras")
# Specify the folder path for the model (the directory containing the model files)
folder_path = "apipyo/Cardiovascular_Disease"
# Create the directory if it doesn't exist
os.makedirs(folder_path, exist_ok=True)
# Move the saved model into the specified folder
os.rename("Cardiovascular-Disease-Detection.keras", os.path.join(folder_path, "Cardiovascular-Disease-Detection.keras"))
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, classification_report
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.datasets import mnist
data = pd.read_csv("/content/cardio_train.csv", sep = ";")
data = data.rename(columns = {'cardio':'target'})
data.head()
!pip install sweetviz
import sweetviz as sv
report = sv.analyze(data)
# Read file HTML
with open('Cardiac_Data_Analysis.html', 'r') as file:
report_html = file.read()
# HTML to file .bin
with open('Cardiac_Data_Analysis.bin', 'wb') as file:
file.write(report_html.encode('utf-8'))
import torch
# Read the content of the existing HTML file
with open('Cardiac_Data_Analysis.html', 'r', encoding='utf-8') as file:
report_html = file.read()
# Save the content as a binary file
with open('Cardiac_Data_Analysis.bin', 'wb') as file:
file.write(report_html.encode('utf-8'))
# Here we use the length of the HTML string as a simple example
html_tensor = torch.tensor([len(report_html)]) # Create a tensor with the length of the HTML content
# Save the tensor as a .pth file
torch.save(html_tensor, 'Cardiac_Data_Analysis.pth')
print("Files saved successfully: Cardiac_Data_Analysis.bin and Cardiac_Data_Analysis.pth")
X = data.drop(columns = 'target',axis = 1)
Y = data['target']
X = data.drop(columns = 'target',axis = 1)
Y = data['target']
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42) # Adjust test_size and random_state as needed
# Initialize the Gradient Boosting Classifier
gb_classifier = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
# Train the model
gb_classifier.fit(X_train, y_train)
# Make predictions on the test set
y_pred = gb_classifier.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
print("Accuracy:", accuracy)
print("\nClassification Report:\n", report)
input_data = (15,22530,1,169,80.0,120,80,1,1,0,0,1)
idata = np.asarray(input_data)
idata_reshaped = idata.reshape(1,-1)
model = gb_classifier # Assuming gb_classifier was trained in a previous cell
prediction = model.predict(idata_reshaped)
print(prediction)
if(prediction[0]==1):
{print("This person has heart desease")}
else:
print("This person is safe")
# Instead of using coef_, you can use feature_importances_ to see the importance of each feature.
importances = model.feature_importances_
features = X.columns
for feature, importance in zip(features, importances):
print(f'{feature}: {importance:.4f}')
import joblib
import numpy as np
import torch
# Assuming gb_classifier is your trained scikit-learn model and y_pred are your predictions
# Save the trained model using joblib
joblib.dump(gb_classifier, 'model.pkl')
# Convert predictions to a numpy array (if not already) and then to a tensor
predictions_tensor = torch.tensor(y_pred)
# Save predictions to a .pth file
torch.save(predictions_tensor, 'predictions.pth')
print("Model saved as model.pkl and predictions saved as predictions.pth")
import joblib
import numpy as np
import pickle
# Assuming `gb_classifier` is your trained scikit-learn model and `y_pred` are your predictions
# Save the trained scikit-learn model using joblib (which saves in binary format)
joblib.dump(gb_classifier, 'model.bin')
# Convert predictions to a numpy array if not already
predictions_array = np.array(y_pred)
# Save predictions to a binary file using numpy
np.save('predictions.bin', predictions_array)
print("Model saved as model.bin and predictions saved as predictions.bin") |