bubbliiiing commited on
Commit
145f4aa
·
1 Parent(s): b95884d

Update Weights

Browse files
.gitattributes CHANGED
@@ -33,3 +33,16 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ google/umt5-xxl/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ xlm-roberta-large/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ assets/comp_effic.png filter=lfs diff=lfs merge=lfs -text
39
+ assets/data_for_diff_stage.jpg filter=lfs diff=lfs merge=lfs -text
40
+ assets/i2v_res.png filter=lfs diff=lfs merge=lfs -text
41
+ assets/logo.png filter=lfs diff=lfs merge=lfs -text
42
+ assets/t2v_res.jpg filter=lfs diff=lfs merge=lfs -text
43
+ assets/vben_vs_sota.png filter=lfs diff=lfs merge=lfs -text
44
+ assets/vben_vs_sota_t2i.jpg filter=lfs diff=lfs merge=lfs -text
45
+ assets/video_dit_arch.jpg filter=lfs diff=lfs merge=lfs -text
46
+ assets/video_vae_res.jpg filter=lfs diff=lfs merge=lfs -text
47
+ examples/i2v_input.JPG filter=lfs diff=lfs merge=lfs -text
48
+ assets/vben_1.3b_vs_sota.png filter=lfs diff=lfs merge=lfs -text
LICENSE.txt ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,3 +1,249 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - zh
6
+ pipeline_tag: text-to-video
7
+ library_name: diffusers
8
+ tags:
9
+ - video
10
+ - video-generation
11
+ ---
12
+
13
+ # Wan-Fun
14
+
15
+ 😊 Welcome!
16
+
17
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)](https://huggingface.co/spaces/alibaba-pai/Wan2.1-Fun-1.3B-InP)
18
+
19
+ [![Github](https://img.shields.io/badge/🎬%20Code-Github-blue)](https://github.com/aigc-apps/VideoX-Fun)
20
+
21
+ [English](./README_en.md) | [简体中文](./README.md)
22
+
23
+ # 目录
24
+ - [目录](#目录)
25
+ - [模型地址](#模型地址)
26
+ - [视频作品](#视频作品)
27
+ - [快速启动](#快速启动)
28
+ - [如何使用](#如何使用)
29
+ - [参考文献](#参考文献)
30
+ - [许可证](#许可证)
31
+
32
+ # 模型地址
33
+ V1.0:
34
+ | 名称 | 存储空间 | Hugging Face | Model Scope | 描述 |
35
+ |--|--|--|--|--|
36
+ | Wan2.1-Fun-1.3B-InP | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-InP) | Wan2.1-Fun-1.3B文图生视频权重,以多分辨率训练,支持首尾图预测。 |
37
+ | Wan2.1-Fun-14B-InP | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP) | Wan2.1-Fun-14B文图生视频权重,以多分辨率训练,支持首尾图预测。 |
38
+ | Wan2.1-Fun-1.3B-Control | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-Control)| Wan2.1-Fun-1.3B视频控制权重,支持不同的控制条件,如Canny、Depth、Pose、MLSD等,同时支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
39
+ | Wan2.1-Fun-14B-Control | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-Control)| Wan2.1-Fun-14B视频控制权重,支持不同的控制条件,如Canny、Depth、Pose、MLSD等,同时支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
40
+
41
+ # 视频作品
42
+
43
+ ### Wan2.1-Fun-14B-InP && Wan2.1-Fun-1.3B-InP
44
+
45
+ <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
46
+ <tr>
47
+ <td>
48
+ <video src="https://github.com/user-attachments/assets/bd72a276-e60e-4b5d-86c1-d0f67e7425b9" width="100%" controls autoplay loop></video>
49
+ </td>
50
+ <td>
51
+ <video src="https://github.com/user-attachments/assets/cb7aef09-52c2-4973-80b4-b2fb63425044" width="100%" controls autoplay loop></video>
52
+ </td>
53
+ <td>
54
+ <video src="https://github.com/user-attachments/assets/4e10d491-f1cf-4b08-a7c5-1e01e5418140" width="100%" controls autoplay loop></video>
55
+ </td>
56
+ <td>
57
+ <video src="https://github.com/user-attachments/assets/f7e363a9-be09-4b72-bccf-cce9c9ebeb9b" width="100%" controls autoplay loop></video>
58
+ </td>
59
+ </tr>
60
+ </table>
61
+
62
+ <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
63
+ <tr>
64
+ <td>
65
+ <video src="https://github.com/user-attachments/assets/28f3e720-8acc-4f22-a5d0-ec1c571e9466" width="100%" controls autoplay loop></video>
66
+ </td>
67
+ <td>
68
+ <video src="https://github.com/user-attachments/assets/fb6e4cb9-270d-47cd-8501-caf8f3e91b5c" width="100%" controls autoplay loop></video>
69
+ </td>
70
+ <td>
71
+ <video src="https://github.com/user-attachments/assets/989a4644-e33b-4f0c-b68e-2ff6ba37ac7e" width="100%" controls autoplay loop></video>
72
+ </td>
73
+ <td>
74
+ <video src="https://github.com/user-attachments/assets/9c604fa7-8657-49d1-8066-b5bb198b28b6" width="100%" controls autoplay loop></video>
75
+ </td>
76
+ </tr>
77
+ </table>
78
+
79
+ ### Wan2.1-Fun-14B-Control && Wan2.1-Fun-1.3B-Control
80
+
81
+ <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
82
+ <tr>
83
+ <td>
84
+ <video src="https://github.com/user-attachments/assets/f35602c4-9f0a-4105-9762-1e3a88abbac6" width="100%" controls autoplay loop></video>
85
+ </td>
86
+ <td>
87
+ <video src="https://github.com/user-attachments/assets/8b0f0e87-f1be-4915-bb35-2d53c852333e" width="100%" controls autoplay loop></video>
88
+ </td>
89
+ <td>
90
+ <video src="https://github.com/user-attachments/assets/972012c1-772b-427a-bce6-ba8b39edcfad" width="100%" controls autoplay loop></video>
91
+ </td>
92
+ <tr>
93
+ </table>
94
+
95
+ <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
96
+ <tr>
97
+ <td>
98
+ <video src="https://github.com/user-attachments/assets/53002ce2-dd18-4d4f-8135-b6f68364cabd" width="100%" controls autoplay loop></video>
99
+ </td>
100
+ <td>
101
+ <video src="https://github.com/user-attachments/assets/a1a07cf8-d86d-4cd2-831f-18a6c1ceee1d" width="100%" controls autoplay loop></video>
102
+ </td>
103
+ <td>
104
+ <video src="https://github.com/user-attachments/assets/3224804f-342d-4947-918d-d9fec8e3d273" width="100%" controls autoplay loop></video>
105
+ </td>
106
+ <tr>
107
+ <td>
108
+ <video src="https://github.com/user-attachments/assets/c6c5d557-9772-483e-ae47-863d8a26db4a" width="100%" controls autoplay loop></video>
109
+ </td>
110
+ <td>
111
+ <video src="https://github.com/user-attachments/assets/af617971-597c-4be4-beb5-f9e8aaca2d14" width="100%" controls autoplay loop></video>
112
+ </td>
113
+ <td>
114
+ <video src="https://github.com/user-attachments/assets/8411151e-f491-4264-8368-7fc3c5a6992b" width="100%" controls autoplay loop></video>
115
+ </td>
116
+ </tr>
117
+ </table>
118
+
119
+ # 快速启动
120
+ ### 1. 云使用: AliyunDSW/Docker
121
+ #### a. 通过阿里云 DSW
122
+ DSW 有免费 GPU 时间,用户可申请一次,申请后3个月内有效。
123
+
124
+ 阿里云在[Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1)提供免费GPU时间,获取并在阿里云PAI-DSW中使用,5分钟内即可启动CogVideoX-Fun。
125
+
126
+ [![DSW Notebook](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/dsw.png)](https://gallery.pai-ml.com/#/preview/deepLearning/cv/cogvideox_fun)
127
+
128
+ #### b. 通过ComfyUI
129
+ 我们的ComfyUI界面如下,具体查看[ComfyUI README](comfyui/README.md)。
130
+ ![workflow graph](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/cogvideoxfunv1_workflow_i2v.jpg)
131
+
132
+ #### c. 通过docker
133
+ 使用docker的情况下,请保证机器中已经正确安装显卡驱动与CUDA环境,然后以此执行以下命令:
134
+
135
+ ```
136
+ # pull image
137
+ docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
138
+
139
+ # enter image
140
+ docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
141
+
142
+ # clone code
143
+ git clone https://github.com/aigc-apps/CogVideoX-Fun.git
144
+
145
+ # enter CogVideoX-Fun's dir
146
+ cd CogVideoX-Fun
147
+
148
+ # download weights
149
+ mkdir models/Diffusion_Transformer
150
+ mkdir models/Personalized_Model
151
+
152
+ # Please use the hugginface link or modelscope link to download the model.
153
+ # CogVideoX-Fun
154
+ # https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP
155
+ # https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-InP
156
+
157
+ # Wan
158
+ # https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP
159
+ # https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP
160
+ ```
161
+
162
+ ### 2. 本地安装: 环境检查/下载/安装
163
+ #### a. 环境检查
164
+ 我们已验证该库可在以下环境中执行:
165
+
166
+ Windows 的详细信息:
167
+ - 操作系统 Windows 10
168
+ - python: python3.10 & python3.11
169
+ - pytorch: torch2.2.0
170
+ - CUDA: 11.8 & 12.1
171
+ - CUDNN: 8+
172
+ - GPU: Nvidia-3060 12G & Nvidia-3090 24G
173
+
174
+ Linux 的详细信息:
175
+ - 操作系统 Ubuntu 20.04, CentOS
176
+ - python: python3.10 & python3.11
177
+ - pytorch: torch2.2.0
178
+ - CUDA: 11.8 & 12.1
179
+ - CUDNN: 8+
180
+ - GPU:Nvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G
181
+
182
+ 我们需要大约 60GB 的可用磁盘空间,请检查!
183
+
184
+ #### b. 权重放置
185
+ 我们最好将[权重](#model-zoo)按照指定路径进行放置:
186
+
187
+ ```
188
+ 📦 models/
189
+ ├── 📂 Diffusion_Transformer/
190
+ │ ├── 📂 CogVideoX-Fun-V1.1-2b-InP/
191
+ │ ├── 📂 CogVideoX-Fun-V1.1-5b-InP/
192
+ │ ├── 📂 Wan2.1-Fun-14B-InP
193
+ │ └── 📂 Wan2.1-Fun-1.3B-InP/
194
+ ├── 📂 Personalized_Model/
195
+ │ └── your trained trainformer model / your trained lora model (for UI load)
196
+ ```
197
+
198
+ # 如何使用
199
+
200
+ <h3 id="video-gen">1. 生成 </h3>
201
+
202
+ #### a、显存节省方案
203
+ 由于Wan2.1的参数非常大,我们需要考虑显存节省方案,以节省显存适应消费级显卡。我们给每个预测文件都提供了GPU_memory_mode,可以在model_cpu_offload,model_cpu_offload_and_qfloat8,sequential_cpu_offload中进行选择。该方案同样适用于CogVideoX-Fun的生成。
204
+
205
+ - model_cpu_offload代表整个模型在使用后会进入cpu,可以节省部分显存。
206
+ - model_cpu_offload_and_qfloat8代表整个模型在使用后会进入cpu,并且对transformer模型进行了float8的量化,可以节省更多的显存。
207
+ - sequential_cpu_offload代表模型的每一层在使用后会进入cpu,速度较慢,节省大量显存。
208
+
209
+ qfloat8会部分降低模型的性能,但可以节省更多的显存。如果显存足够,推荐使用model_cpu_offload。
210
+
211
+ #### b、通过comfyui
212
+ 具体查看[ComfyUI README](comfyui/README.md)。
213
+
214
+ #### c、运行python文件
215
+ - 步骤1:下载对应[权重](#model-zoo)放入models文件夹。
216
+ - 步骤2:根据不同的权重与预测目标使用不同的文件进行预测。当前该库支持CogVideoX-Fun、Wan2.1和Wan2.1-Fun,在examples文件夹下用文件夹名以区分,不同模型支持的功能不同,请视具体情况予以区分。以CogVideoX-Fun为例。
217
+ - 文生视频:
218
+ - 使用examples/cogvideox_fun/predict_t2v.py文件中修改prompt、neg_prompt、guidance_scale和seed。
219
+ - 而后运行examples/cogvideox_fun/predict_t2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos文件夹中。
220
+ - 图生视频:
221
+ - 使用examples/cogvideox_fun/predict_i2v.py文件中修改validation_image_start、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
222
+ - validation_image_start是视频的开始图片,validation_image_end是视频的结尾图片。
223
+ - 而后运行examples/cogvideox_fun/predict_i2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_i2v文件夹中。
224
+ - 视频生视频:
225
+ - 使用examples/cogvideox_fun/predict_v2v.py文件中修改validation_video、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
226
+ - validation_video是视频生视频的参考视频。您可以使用以下视频运行演示:[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/play_guitar.mp4)
227
+ - 而后运行examples/cogvideox_fun/predict_v2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_v2v文件夹中。
228
+ - 普通控制生视频(Canny、Pose、Depth等):
229
+ - 使用examples/cogvideox_fun/predict_v2v_control.py文件中修改control_video、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
230
+ - control_video是控制生视频的控制视频,是使用Canny、Pose、Depth等算子提取后的视频。您可以使用以下视频运行演示:[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1.1/pose.mp4)
231
+ - 而后运行examples/cogvideox_fun/predict_v2v_control.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_v2v_control文件夹中。
232
+ - 步骤3:如果想结合自己训练的其他backbone与Lora,则看情况修改examples/{model_name}/predict_t2v.py中的examples/{model_name}/predict_i2v.py和lora_path。
233
+
234
+ #### d、通过ui界面
235
+
236
+ webui支持文生视频、图生视频、视频生视频和普通控制生视频(Canny、Pose、Depth等)。当前该库支持CogVideoX-Fun、Wan2.1和Wan2.1-Fun,在examples文件夹下用文件夹名以区分,不同模型支持的功能不同,请视具体情况予以区分。以CogVideoX-Fun为例。
237
+
238
+ - 步骤1:下载对应[权重](#model-zoo)放入models文件夹。
239
+ - 步骤2:运行examples/cogvideox_fun/app.py文件,进入gradio页面。
240
+ - 步骤3:根据页面选择生成模型,填入prompt、neg_prompt、guidance_scale和seed等,点击生成,等待生成结果,结果保存在sample文件夹中。
241
+
242
+ # 参考文献
243
+ - CogVideo: https://github.com/THUDM/CogVideo/
244
+ - EasyAnimate: https://github.com/aigc-apps/EasyAnimate
245
+ - Wan2.1: https://github.com/Wan-Video/Wan2.1/
246
+
247
+ # 许可证
248
+ 本项目采用 [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
249
+
README_en.md ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - zh
6
+ pipeline_tag: text-to-video
7
+ library_name: diffusers
8
+ tags:
9
+ - video
10
+ - video-generation
11
+ ---
12
+
13
+ # Wan-Fun
14
+
15
+ 😊 Welcome!
16
+
17
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)](https://huggingface.co/spaces/alibaba-pai/Wan2.1-Fun-1.3B-InP)
18
+
19
+ [![Github](https://img.shields.io/badge/🎬%20Code-Github-blue)](https://github.com/aigc-apps/VideoX-Fun)
20
+
21
+ [English](./README_en.md) | [简体中文](./README.md)
22
+
23
+ # Table of Contents
24
+ - [Table of Contents](#table-of-contents)
25
+ - [Model zoo](#model-zoo)
26
+ - [Video Result](#video-result)
27
+ - [Quick Start](#quick-start)
28
+ - [How to use](#how-to-use)
29
+ - [Reference](#reference)
30
+ - [License](#license)
31
+
32
+ # Model zoo
33
+ V1.0:
34
+ | Name | Storage Space | Hugging Face | Model Scope | Description |
35
+ |--|--|--|--|--|
36
+ | Wan2.1-Fun-1.3B-InP | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-InP) | Wan2.1-Fun-1.3B text-to-video weights, trained at multiple resolutions, supporting start and end frame prediction. |
37
+ | Wan2.1-Fun-14B-InP | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP) | Wan2.1-Fun-14B text-to-video weights, trained at multiple resolutions, supporting start and end frame prediction. |
38
+ | Wan2.1-Fun-1.3B-Control | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-Control) | Wan2.1-Fun-1.3B video control weights, supporting various control conditions such as Canny, Depth, Pose, MLSD, etc., and trajectory control. Supports multi-resolution (512, 768, 1024) video prediction at 81 frames, trained at 16 frames per second, with multilingual prediction support. |
39
+ | Wan2.1-Fun-14B-Control | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-Control) | Wan2.1-Fun-14B video control weights, supporting various control conditions such as Canny, Depth, Pose, MLSD, etc., and trajectory control. Supports multi-resolution (512, 768, 1024) video prediction at 81 frames, trained at 16 frames per second, with multilingual prediction support. |
40
+
41
+ # Video Result
42
+
43
+ ### Wan2.1-Fun-14B-InP && Wan2.1-Fun-1.3B-InP
44
+
45
+ <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
46
+ <tr>
47
+ <td>
48
+ <video src="https://github.com/user-attachments/assets/bd72a276-e60e-4b5d-86c1-d0f67e7425b9" width="100%" controls autoplay loop></video>
49
+ </td>
50
+ <td>
51
+ <video src="https://github.com/user-attachments/assets/cb7aef09-52c2-4973-80b4-b2fb63425044" width="100%" controls autoplay loop></video>
52
+ </td>
53
+ <td>
54
+ <video src="https://github.com/user-attachments/assets/4e10d491-f1cf-4b08-a7c5-1e01e5418140" width="100%" controls autoplay loop></video>
55
+ </td>
56
+ <td>
57
+ <video src="https://github.com/user-attachments/assets/f7e363a9-be09-4b72-bccf-cce9c9ebeb9b" width="100%" controls autoplay loop></video>
58
+ </td>
59
+ </tr>
60
+ </table>
61
+
62
+ <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
63
+ <tr>
64
+ <td>
65
+ <video src="https://github.com/user-attachments/assets/28f3e720-8acc-4f22-a5d0-ec1c571e9466" width="100%" controls autoplay loop></video>
66
+ </td>
67
+ <td>
68
+ <video src="https://github.com/user-attachments/assets/fb6e4cb9-270d-47cd-8501-caf8f3e91b5c" width="100%" controls autoplay loop></video>
69
+ </td>
70
+ <td>
71
+ <video src="https://github.com/user-attachments/assets/989a4644-e33b-4f0c-b68e-2ff6ba37ac7e" width="100%" controls autoplay loop></video>
72
+ </td>
73
+ <td>
74
+ <video src="https://github.com/user-attachments/assets/9c604fa7-8657-49d1-8066-b5bb198b28b6" width="100%" controls autoplay loop></video>
75
+ </td>
76
+ </tr>
77
+ </table>
78
+
79
+ ### Wan2.1-Fun-14B-Control && Wan2.1-Fun-1.3B-Control
80
+
81
+ <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
82
+ <tr>
83
+ <td>
84
+ <video src="https://github.com/user-attachments/assets/f35602c4-9f0a-4105-9762-1e3a88abbac6" width="100%" controls autoplay loop></video>
85
+ </td>
86
+ <td>
87
+ <video src="https://github.com/user-attachments/assets/8b0f0e87-f1be-4915-bb35-2d53c852333e" width="100%" controls autoplay loop></video>
88
+ </td>
89
+ <td>
90
+ <video src="https://github.com/user-attachments/assets/972012c1-772b-427a-bce6-ba8b39edcfad" width="100%" controls autoplay loop></video>
91
+ </td>
92
+ <tr>
93
+ </table>
94
+
95
+ <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
96
+ <tr>
97
+ <td>
98
+ <video src="https://github.com/user-attachments/assets/53002ce2-dd18-4d4f-8135-b6f68364cabd" width="100%" controls autoplay loop></video>
99
+ </td>
100
+ <td>
101
+ <video src="https://github.com/user-attachments/assets/a1a07cf8-d86d-4cd2-831f-18a6c1ceee1d" width="100%" controls autoplay loop></video>
102
+ </td>
103
+ <td>
104
+ <video src="https://github.com/user-attachments/assets/3224804f-342d-4947-918d-d9fec8e3d273" width="100%" controls autoplay loop></video>
105
+ </td>
106
+ <tr>
107
+ <td>
108
+ <video src="https://github.com/user-attachments/assets/c6c5d557-9772-483e-ae47-863d8a26db4a" width="100%" controls autoplay loop></video>
109
+ </td>
110
+ <td>
111
+ <video src="https://github.com/user-attachments/assets/af617971-597c-4be4-beb5-f9e8aaca2d14" width="100%" controls autoplay loop></video>
112
+ </td>
113
+ <td>
114
+ <video src="https://github.com/user-attachments/assets/8411151e-f491-4264-8368-7fc3c5a6992b" width="100%" controls autoplay loop></video>
115
+ </td>
116
+ </tr>
117
+ </table>
118
+
119
+ # Quick Start
120
+ ### 1. Cloud usage: AliyunDSW/Docker
121
+ #### a. From AliyunDSW
122
+ DSW has free GPU time, which can be applied once by a user and is valid for 3 months after applying.
123
+
124
+ Aliyun provide free GPU time in [Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1), get it and use in Aliyun PAI-DSW to start CogVideoX-Fun within 5min!
125
+
126
+ [![DSW Notebook](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/dsw.png)](https://gallery.pai-ml.com/#/preview/deepLearning/cv/cogvideox_fun)
127
+
128
+ #### b. From ComfyUI
129
+ Our ComfyUI is as follows, please refer to [ComfyUI README](comfyui/README.md) for details.
130
+ ![workflow graph](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/cogvideoxfunv1_workflow_i2v.jpg)
131
+
132
+ #### c. From docker
133
+ If you are using docker, please make sure that the graphics card driver and CUDA environment have been installed correctly in your machine.
134
+
135
+ Then execute the following commands in this way:
136
+
137
+ ```
138
+ # pull image
139
+ docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
140
+
141
+ # enter image
142
+ docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
143
+
144
+ # clone code
145
+ git clone https://github.com/aigc-apps/CogVideoX-Fun.git
146
+
147
+ # enter CogVideoX-Fun's dir
148
+ cd CogVideoX-Fun
149
+
150
+ # download weights
151
+ mkdir models/Diffusion_Transformer
152
+ mkdir models/Personalized_Model
153
+
154
+ # Please use the hugginface link or modelscope link to download the model.
155
+ # CogVideoX-Fun
156
+ # https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP
157
+ # https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-InP
158
+
159
+ # Wan
160
+ # https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP
161
+ # https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP
162
+ ```
163
+
164
+ ### 2. Local install: Environment Check/Downloading/Installation
165
+ #### a. Environment Check
166
+ We have verified this repo execution on the following environment:
167
+
168
+ The detailed of Windows:
169
+ - OS: Windows 10
170
+ - python: python3.10 & python3.11
171
+ - pytorch: torch2.2.0
172
+ - CUDA: 11.8 & 12.1
173
+ - CUDNN: 8+
174
+ - GPU: Nvidia-3060 12G & Nvidia-3090 24G
175
+
176
+ The detailed of Linux:
177
+ - OS: Ubuntu 20.04, CentOS
178
+ - python: python3.10 & python3.11
179
+ - pytorch: torch2.2.0
180
+ - CUDA: 11.8 & 12.1
181
+ - CUDNN: 8+
182
+ - GPU:Nvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G
183
+
184
+ We need about 60GB available on disk (for saving weights), please check!
185
+
186
+ #### b. Weights
187
+ We'd better place the [weights](#model-zoo) along the specified path:
188
+
189
+ ```
190
+ 📦 models/
191
+ ├── 📂 Diffusion_Transformer/
192
+ │ ├── 📂 CogVideoX-Fun-V1.1-2b-InP/
193
+ │ ├── 📂 CogVideoX-Fun-V1.1-5b-InP/
194
+ │ ├── 📂 Wan2.1-Fun-14B-InP
195
+ │ └── 📂 Wan2.1-Fun-1.3B-InP/
196
+ ├── 📂 Personalized_Model/
197
+ │ └── your trained trainformer model / your trained lora model (for UI load)
198
+ ```
199
+
200
+ # How to Use
201
+
202
+ <h3 id="video-gen">1. Generation</h3>
203
+
204
+ #### a. GPU Memory Optimization
205
+ Since Wan2.1 has a very large number of parameters, we need to consider memory optimization strategies to adapt to consumer-grade GPUs. We provide `GPU_memory_mode` for each prediction file, allowing you to choose between `model_cpu_offload`, `model_cpu_offload_and_qfloat8`, and `sequential_cpu_offload`. This solution is also applicable to CogVideoX-Fun generation.
206
+
207
+ - `model_cpu_offload`: The entire model is moved to the CPU after use, saving some GPU memory.
208
+ - `model_cpu_offload_and_qfloat8`: The entire model is moved to the CPU after use, and the transformer model is quantized to float8, saving more GPU memory.
209
+ - `sequential_cpu_offload`: Each layer of the model is moved to the CPU after use. It is slower but saves a significant amount of GPU memory.
210
+
211
+ `qfloat8` may slightly reduce model performance but saves more GPU memory. If you have sufficient GPU memory, it is recommended to use `model_cpu_offload`.
212
+
213
+ #### b. Using ComfyUI
214
+ For details, refer to [ComfyUI README](comfyui/README.md).
215
+
216
+ #### c. Running Python Files
217
+ - **Step 1**: Download the corresponding [weights](#model-zoo) and place them in the `models` folder.
218
+ - **Step 2**: Use different files for prediction based on the weights and prediction goals. This library currently supports CogVideoX-Fun, Wan2.1, and Wan2.1-Fun. Different models are distinguished by folder names under the `examples` folder, and their supported features vary. Use them accordingly. Below is an example using CogVideoX-Fun:
219
+ - **Text-to-Video**:
220
+ - Modify `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_t2v.py`.
221
+ - Run the file `examples/cogvideox_fun/predict_t2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos`.
222
+ - **Image-to-Video**:
223
+ - Modify `validation_image_start`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_i2v.py`.
224
+ - `validation_image_start` is the starting image of the video, and `validation_image_end` is the ending image of the video.
225
+ - Run the file `examples/cogvideox_fun/predict_i2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_i2v`.
226
+ - **Video-to-Video**:
227
+ - Modify `validation_video`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_v2v.py`.
228
+ - `validation_video` is the reference video for video-to-video generation. You can use the following demo video: [Demo Video](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/play_guitar.mp4).
229
+ - Run the file `examples/cogvideox_fun/predict_v2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_v2v`.
230
+ - **Controlled Video Generation (Canny, Pose, Depth, etc.)**:
231
+ - Modify `control_video`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_v2v_control.py`.
232
+ - `control_video` is the control video extracted using operators such as Canny, Pose, or Depth. You can use the following demo video: [Demo Video](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1.1/pose.mp4).
233
+ - Run the file `examples/cogvideox_fun/predict_v2v_control.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_v2v_control`.
234
+ - **Step 3**: If you want to integrate other backbones or Loras trained by yourself, modify `lora_path` and relevant paths in `examples/{model_name}/predict_t2v.py` or `examples/{model_name}/predict_i2v.py` as needed.
235
+
236
+ #### d. Using the Web UI
237
+ The web UI supports text-to-video, image-to-video, video-to-video, and controlled video generation (Canny, Pose, Depth, etc.). This library currently supports CogVideoX-Fun, Wan2.1, and Wan2.1-Fun. Different models are distinguished by folder names under the `examples` folder, and their supported features vary. Use them accordingly. Below is an example using CogVideoX-Fun:
238
+
239
+ - **Step 1**: Download the corresponding [weights](#model-zoo) and place them in the `models` folder.
240
+ - **Step 2**: Run the file `examples/cogvideox_fun/app.py` to access the Gradio interface.
241
+ - **Step 3**: Select the generation model on the page, fill in `prompt`, `neg_prompt`, `guidance_scale`, and `seed`, click "Generate," and wait for the results. The generated videos will be saved in the `sample` folder.
242
+
243
+ # Reference
244
+ - CogVideo: https://github.com/THUDM/CogVideo/
245
+ - EasyAnimate: https://github.com/aigc-apps/EasyAnimate
246
+ - Wan2.1: https://github.com/Wan-Video/Wan2.1/
247
+
248
+ # License
249
+ This project is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
Wan2.1_VAE.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38071ab59bd94681c686fa51d75a1968f64e470262043be31f7a094e442fd981
3
+ size 507609880
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "WanTransformer3DModel",
3
+ "_diffusers_version": "0.31.0",
4
+ "cross_attn_norm": true,
5
+ "dim": 5120,
6
+ "eps": 1e-06,
7
+ "ffn_dim": 13824,
8
+ "freq_dim": 256,
9
+ "hidden_size": 2048,
10
+ "in_channels": 36,
11
+ "in_dim": 48,
12
+ "model_type": "i2v",
13
+ "num_heads": 40,
14
+ "num_layers": 40,
15
+ "out_dim": 16,
16
+ "patch_size": [
17
+ 1,
18
+ 2,
19
+ 2
20
+ ],
21
+ "qk_norm": true,
22
+ "text_dim": 4096,
23
+ "text_len": 512,
24
+ "window_size": [
25
+ -1,
26
+ -1
27
+ ],
28
+ "add_ref_conv": true
29
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework": "pytorch", "task": "others", "allow_remote": true}
models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:628c9998b613391f193eb67ff68da9667d75f492911e4eb3decf23460a158c38
3
+ size 4772359047
models_t5_umt5-xxl-enc-bf16.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cace0da2b446bbbbc57d031ab6cf163a3d59b366da94e5afe36745b746fd81d
3
+ size 11361920418