bubbliiiing
commited on
Commit
·
145f4aa
1
Parent(s):
b95884d
Update Weights
Browse files- .gitattributes +13 -0
- LICENSE.txt +201 -0
- README.md +249 -3
- README_en.md +249 -0
- Wan2.1_VAE.pth +3 -0
- config.json +29 -0
- configuration.json +1 -0
- models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth +3 -0
- models_t5_umt5-xxl-enc-bf16.pth +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,16 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
google/umt5-xxl/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
xlm-roberta-large/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
assets/comp_effic.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
assets/data_for_diff_stage.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
+
assets/i2v_res.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
assets/logo.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
assets/t2v_res.jpg filter=lfs diff=lfs merge=lfs -text
|
43 |
+
assets/vben_vs_sota.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
assets/vben_vs_sota_t2i.jpg filter=lfs diff=lfs merge=lfs -text
|
45 |
+
assets/video_dit_arch.jpg filter=lfs diff=lfs merge=lfs -text
|
46 |
+
assets/video_vae_res.jpg filter=lfs diff=lfs merge=lfs -text
|
47 |
+
examples/i2v_input.JPG filter=lfs diff=lfs merge=lfs -text
|
48 |
+
assets/vben_1.3b_vs_sota.png filter=lfs diff=lfs merge=lfs -text
|
LICENSE.txt
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,3 +1,249 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
pipeline_tag: text-to-video
|
7 |
+
library_name: diffusers
|
8 |
+
tags:
|
9 |
+
- video
|
10 |
+
- video-generation
|
11 |
+
---
|
12 |
+
|
13 |
+
# Wan-Fun
|
14 |
+
|
15 |
+
😊 Welcome!
|
16 |
+
|
17 |
+
[](https://huggingface.co/spaces/alibaba-pai/Wan2.1-Fun-1.3B-InP)
|
18 |
+
|
19 |
+
[](https://github.com/aigc-apps/VideoX-Fun)
|
20 |
+
|
21 |
+
[English](./README_en.md) | [简体中文](./README.md)
|
22 |
+
|
23 |
+
# 目录
|
24 |
+
- [目录](#目录)
|
25 |
+
- [模型地址](#模型地址)
|
26 |
+
- [视频作品](#视频作品)
|
27 |
+
- [快速启动](#快速启动)
|
28 |
+
- [如何使用](#如何使用)
|
29 |
+
- [参考文献](#参考文献)
|
30 |
+
- [许可证](#许可证)
|
31 |
+
|
32 |
+
# 模型地址
|
33 |
+
V1.0:
|
34 |
+
| 名称 | 存储空间 | Hugging Face | Model Scope | 描述 |
|
35 |
+
|--|--|--|--|--|
|
36 |
+
| Wan2.1-Fun-1.3B-InP | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-InP) | Wan2.1-Fun-1.3B文图生视频权重,以多分辨率训练,支持首尾图预测。 |
|
37 |
+
| Wan2.1-Fun-14B-InP | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP) | Wan2.1-Fun-14B文图生视频权重,以多分辨率训练,支持首尾图预测。 |
|
38 |
+
| Wan2.1-Fun-1.3B-Control | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-Control)| Wan2.1-Fun-1.3B视频控制权重,支持不同的控制条件,如Canny、Depth、Pose、MLSD等,同时支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
|
39 |
+
| Wan2.1-Fun-14B-Control | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-Control)| Wan2.1-Fun-14B视频控制权重,支持不同的控制条件,如Canny、Depth、Pose、MLSD等,同时支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以81帧、每秒16帧进行训练,支持多语言预测 |
|
40 |
+
|
41 |
+
# 视频作品
|
42 |
+
|
43 |
+
### Wan2.1-Fun-14B-InP && Wan2.1-Fun-1.3B-InP
|
44 |
+
|
45 |
+
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
46 |
+
<tr>
|
47 |
+
<td>
|
48 |
+
<video src="https://github.com/user-attachments/assets/bd72a276-e60e-4b5d-86c1-d0f67e7425b9" width="100%" controls autoplay loop></video>
|
49 |
+
</td>
|
50 |
+
<td>
|
51 |
+
<video src="https://github.com/user-attachments/assets/cb7aef09-52c2-4973-80b4-b2fb63425044" width="100%" controls autoplay loop></video>
|
52 |
+
</td>
|
53 |
+
<td>
|
54 |
+
<video src="https://github.com/user-attachments/assets/4e10d491-f1cf-4b08-a7c5-1e01e5418140" width="100%" controls autoplay loop></video>
|
55 |
+
</td>
|
56 |
+
<td>
|
57 |
+
<video src="https://github.com/user-attachments/assets/f7e363a9-be09-4b72-bccf-cce9c9ebeb9b" width="100%" controls autoplay loop></video>
|
58 |
+
</td>
|
59 |
+
</tr>
|
60 |
+
</table>
|
61 |
+
|
62 |
+
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
63 |
+
<tr>
|
64 |
+
<td>
|
65 |
+
<video src="https://github.com/user-attachments/assets/28f3e720-8acc-4f22-a5d0-ec1c571e9466" width="100%" controls autoplay loop></video>
|
66 |
+
</td>
|
67 |
+
<td>
|
68 |
+
<video src="https://github.com/user-attachments/assets/fb6e4cb9-270d-47cd-8501-caf8f3e91b5c" width="100%" controls autoplay loop></video>
|
69 |
+
</td>
|
70 |
+
<td>
|
71 |
+
<video src="https://github.com/user-attachments/assets/989a4644-e33b-4f0c-b68e-2ff6ba37ac7e" width="100%" controls autoplay loop></video>
|
72 |
+
</td>
|
73 |
+
<td>
|
74 |
+
<video src="https://github.com/user-attachments/assets/9c604fa7-8657-49d1-8066-b5bb198b28b6" width="100%" controls autoplay loop></video>
|
75 |
+
</td>
|
76 |
+
</tr>
|
77 |
+
</table>
|
78 |
+
|
79 |
+
### Wan2.1-Fun-14B-Control && Wan2.1-Fun-1.3B-Control
|
80 |
+
|
81 |
+
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
82 |
+
<tr>
|
83 |
+
<td>
|
84 |
+
<video src="https://github.com/user-attachments/assets/f35602c4-9f0a-4105-9762-1e3a88abbac6" width="100%" controls autoplay loop></video>
|
85 |
+
</td>
|
86 |
+
<td>
|
87 |
+
<video src="https://github.com/user-attachments/assets/8b0f0e87-f1be-4915-bb35-2d53c852333e" width="100%" controls autoplay loop></video>
|
88 |
+
</td>
|
89 |
+
<td>
|
90 |
+
<video src="https://github.com/user-attachments/assets/972012c1-772b-427a-bce6-ba8b39edcfad" width="100%" controls autoplay loop></video>
|
91 |
+
</td>
|
92 |
+
<tr>
|
93 |
+
</table>
|
94 |
+
|
95 |
+
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
96 |
+
<tr>
|
97 |
+
<td>
|
98 |
+
<video src="https://github.com/user-attachments/assets/53002ce2-dd18-4d4f-8135-b6f68364cabd" width="100%" controls autoplay loop></video>
|
99 |
+
</td>
|
100 |
+
<td>
|
101 |
+
<video src="https://github.com/user-attachments/assets/a1a07cf8-d86d-4cd2-831f-18a6c1ceee1d" width="100%" controls autoplay loop></video>
|
102 |
+
</td>
|
103 |
+
<td>
|
104 |
+
<video src="https://github.com/user-attachments/assets/3224804f-342d-4947-918d-d9fec8e3d273" width="100%" controls autoplay loop></video>
|
105 |
+
</td>
|
106 |
+
<tr>
|
107 |
+
<td>
|
108 |
+
<video src="https://github.com/user-attachments/assets/c6c5d557-9772-483e-ae47-863d8a26db4a" width="100%" controls autoplay loop></video>
|
109 |
+
</td>
|
110 |
+
<td>
|
111 |
+
<video src="https://github.com/user-attachments/assets/af617971-597c-4be4-beb5-f9e8aaca2d14" width="100%" controls autoplay loop></video>
|
112 |
+
</td>
|
113 |
+
<td>
|
114 |
+
<video src="https://github.com/user-attachments/assets/8411151e-f491-4264-8368-7fc3c5a6992b" width="100%" controls autoplay loop></video>
|
115 |
+
</td>
|
116 |
+
</tr>
|
117 |
+
</table>
|
118 |
+
|
119 |
+
# 快速启动
|
120 |
+
### 1. 云使用: AliyunDSW/Docker
|
121 |
+
#### a. 通过阿里云 DSW
|
122 |
+
DSW 有免费 GPU 时间,用户可申请一次,申请后3个月内有效。
|
123 |
+
|
124 |
+
阿里云在[Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1)提供免费GPU时间,获取并在阿里云PAI-DSW中使用,5分钟内即可启动CogVideoX-Fun。
|
125 |
+
|
126 |
+
[](https://gallery.pai-ml.com/#/preview/deepLearning/cv/cogvideox_fun)
|
127 |
+
|
128 |
+
#### b. 通过ComfyUI
|
129 |
+
我们的ComfyUI界面如下,具体查看[ComfyUI README](comfyui/README.md)。
|
130 |
+

|
131 |
+
|
132 |
+
#### c. 通过docker
|
133 |
+
使用docker的情况下,请保证机器中已经正确安装显卡驱动与CUDA环境,然后以此执行以下命令:
|
134 |
+
|
135 |
+
```
|
136 |
+
# pull image
|
137 |
+
docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
|
138 |
+
|
139 |
+
# enter image
|
140 |
+
docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
|
141 |
+
|
142 |
+
# clone code
|
143 |
+
git clone https://github.com/aigc-apps/CogVideoX-Fun.git
|
144 |
+
|
145 |
+
# enter CogVideoX-Fun's dir
|
146 |
+
cd CogVideoX-Fun
|
147 |
+
|
148 |
+
# download weights
|
149 |
+
mkdir models/Diffusion_Transformer
|
150 |
+
mkdir models/Personalized_Model
|
151 |
+
|
152 |
+
# Please use the hugginface link or modelscope link to download the model.
|
153 |
+
# CogVideoX-Fun
|
154 |
+
# https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP
|
155 |
+
# https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-InP
|
156 |
+
|
157 |
+
# Wan
|
158 |
+
# https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP
|
159 |
+
# https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP
|
160 |
+
```
|
161 |
+
|
162 |
+
### 2. 本地安装: 环境检查/下载/安装
|
163 |
+
#### a. 环境检查
|
164 |
+
我们已验证该库可在以下环境中执行:
|
165 |
+
|
166 |
+
Windows 的详细信息:
|
167 |
+
- 操作系统 Windows 10
|
168 |
+
- python: python3.10 & python3.11
|
169 |
+
- pytorch: torch2.2.0
|
170 |
+
- CUDA: 11.8 & 12.1
|
171 |
+
- CUDNN: 8+
|
172 |
+
- GPU: Nvidia-3060 12G & Nvidia-3090 24G
|
173 |
+
|
174 |
+
Linux 的详细信息:
|
175 |
+
- 操作系统 Ubuntu 20.04, CentOS
|
176 |
+
- python: python3.10 & python3.11
|
177 |
+
- pytorch: torch2.2.0
|
178 |
+
- CUDA: 11.8 & 12.1
|
179 |
+
- CUDNN: 8+
|
180 |
+
- GPU:Nvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G
|
181 |
+
|
182 |
+
我们需要大约 60GB 的可用磁盘空间,请检查!
|
183 |
+
|
184 |
+
#### b. 权重放置
|
185 |
+
我们最好将[权重](#model-zoo)按照指定路径进行放置:
|
186 |
+
|
187 |
+
```
|
188 |
+
📦 models/
|
189 |
+
├── 📂 Diffusion_Transformer/
|
190 |
+
│ ├── 📂 CogVideoX-Fun-V1.1-2b-InP/
|
191 |
+
│ ├── 📂 CogVideoX-Fun-V1.1-5b-InP/
|
192 |
+
│ ├── 📂 Wan2.1-Fun-14B-InP
|
193 |
+
│ └── 📂 Wan2.1-Fun-1.3B-InP/
|
194 |
+
├── 📂 Personalized_Model/
|
195 |
+
│ └── your trained trainformer model / your trained lora model (for UI load)
|
196 |
+
```
|
197 |
+
|
198 |
+
# 如何使用
|
199 |
+
|
200 |
+
<h3 id="video-gen">1. 生成 </h3>
|
201 |
+
|
202 |
+
#### a、显存节省方案
|
203 |
+
由于Wan2.1的参数非常大,我们需要考虑显存节省方案,以节省显存适应消费级显卡。我们给每个预测文件都提供了GPU_memory_mode,可以在model_cpu_offload,model_cpu_offload_and_qfloat8,sequential_cpu_offload中进行选择。该方案同样适用于CogVideoX-Fun的生成。
|
204 |
+
|
205 |
+
- model_cpu_offload代表整个模型在使用后会进入cpu,可以节省部分显存。
|
206 |
+
- model_cpu_offload_and_qfloat8代表整个模型在使用后会进入cpu,并且对transformer模型进行了float8的量化,可以节省更多的显存。
|
207 |
+
- sequential_cpu_offload代表模型的每一层在使用后会进入cpu,速度较慢,节省大量显存。
|
208 |
+
|
209 |
+
qfloat8会部分降低模型的性能,但可以节省更多的显存。如果显存足够,推荐使用model_cpu_offload。
|
210 |
+
|
211 |
+
#### b、通过comfyui
|
212 |
+
具体查看[ComfyUI README](comfyui/README.md)。
|
213 |
+
|
214 |
+
#### c、运行python文件
|
215 |
+
- 步骤1:下载对应[权重](#model-zoo)放入models文件夹。
|
216 |
+
- 步骤2:根据不同的权重与预测目标使用不同的文件进行预测。当前该库支持CogVideoX-Fun、Wan2.1和Wan2.1-Fun,在examples文件夹下用文件夹名以区分,不同模型支持的功能不同,请视具体情况予以区分。以CogVideoX-Fun为例。
|
217 |
+
- 文生视频:
|
218 |
+
- 使用examples/cogvideox_fun/predict_t2v.py文件中修改prompt、neg_prompt、guidance_scale和seed。
|
219 |
+
- 而后运行examples/cogvideox_fun/predict_t2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos文件夹中。
|
220 |
+
- 图生视频:
|
221 |
+
- 使用examples/cogvideox_fun/predict_i2v.py文件中修改validation_image_start、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
|
222 |
+
- validation_image_start是视频的开始图片,validation_image_end是视频的结尾图片。
|
223 |
+
- 而后运行examples/cogvideox_fun/predict_i2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_i2v文件夹中。
|
224 |
+
- 视频生视频:
|
225 |
+
- 使用examples/cogvideox_fun/predict_v2v.py文件中修改validation_video、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
|
226 |
+
- validation_video是视频生视频的参考视频。您可以使用以下视频运行演示:[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/play_guitar.mp4)
|
227 |
+
- 而后运行examples/cogvideox_fun/predict_v2v.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_v2v文件夹中。
|
228 |
+
- 普通控制生视频(Canny、Pose、Depth等):
|
229 |
+
- 使用examples/cogvideox_fun/predict_v2v_control.py文件中修改control_video、validation_image_end、prompt、neg_prompt、guidance_scale和seed。
|
230 |
+
- control_video是控制生视频的控制视频,是使用Canny、Pose、Depth等算子提取后的视频。您可以使用以下视频运行演示:[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1.1/pose.mp4)
|
231 |
+
- 而后运行examples/cogvideox_fun/predict_v2v_control.py文件,等待生成结果,结果保存在samples/cogvideox-fun-videos_v2v_control文件夹中。
|
232 |
+
- 步骤3:如果想结合自己训练的其他backbone与Lora,则看情况修改examples/{model_name}/predict_t2v.py中的examples/{model_name}/predict_i2v.py和lora_path。
|
233 |
+
|
234 |
+
#### d、通过ui界面
|
235 |
+
|
236 |
+
webui支持文生视频、图生视频、视频生视频和普通控制生视频(Canny、Pose、Depth等)。当前该库支持CogVideoX-Fun、Wan2.1和Wan2.1-Fun,在examples文件夹下用文件夹名以区分,不同模型支持的功能不同,请视具体情况予以区分。以CogVideoX-Fun为例。
|
237 |
+
|
238 |
+
- 步骤1:下载对应[权重](#model-zoo)放入models文件夹。
|
239 |
+
- 步骤2:运行examples/cogvideox_fun/app.py文件,进入gradio页面。
|
240 |
+
- 步骤3:根据页面选择生成模型,填入prompt、neg_prompt、guidance_scale和seed等,点击生成,等待生成结果,结果保存在sample文件夹中。
|
241 |
+
|
242 |
+
# 参考文献
|
243 |
+
- CogVideo: https://github.com/THUDM/CogVideo/
|
244 |
+
- EasyAnimate: https://github.com/aigc-apps/EasyAnimate
|
245 |
+
- Wan2.1: https://github.com/Wan-Video/Wan2.1/
|
246 |
+
|
247 |
+
# 许可证
|
248 |
+
本项目采用 [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
|
249 |
+
|
README_en.md
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
pipeline_tag: text-to-video
|
7 |
+
library_name: diffusers
|
8 |
+
tags:
|
9 |
+
- video
|
10 |
+
- video-generation
|
11 |
+
---
|
12 |
+
|
13 |
+
# Wan-Fun
|
14 |
+
|
15 |
+
😊 Welcome!
|
16 |
+
|
17 |
+
[](https://huggingface.co/spaces/alibaba-pai/Wan2.1-Fun-1.3B-InP)
|
18 |
+
|
19 |
+
[](https://github.com/aigc-apps/VideoX-Fun)
|
20 |
+
|
21 |
+
[English](./README_en.md) | [简体中文](./README.md)
|
22 |
+
|
23 |
+
# Table of Contents
|
24 |
+
- [Table of Contents](#table-of-contents)
|
25 |
+
- [Model zoo](#model-zoo)
|
26 |
+
- [Video Result](#video-result)
|
27 |
+
- [Quick Start](#quick-start)
|
28 |
+
- [How to use](#how-to-use)
|
29 |
+
- [Reference](#reference)
|
30 |
+
- [License](#license)
|
31 |
+
|
32 |
+
# Model zoo
|
33 |
+
V1.0:
|
34 |
+
| Name | Storage Space | Hugging Face | Model Scope | Description |
|
35 |
+
|--|--|--|--|--|
|
36 |
+
| Wan2.1-Fun-1.3B-InP | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-InP) | Wan2.1-Fun-1.3B text-to-video weights, trained at multiple resolutions, supporting start and end frame prediction. |
|
37 |
+
| Wan2.1-Fun-14B-InP | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP) | Wan2.1-Fun-14B text-to-video weights, trained at multiple resolutions, supporting start and end frame prediction. |
|
38 |
+
| Wan2.1-Fun-1.3B-Control | 19.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-1.3B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-Control) | Wan2.1-Fun-1.3B video control weights, supporting various control conditions such as Canny, Depth, Pose, MLSD, etc., and trajectory control. Supports multi-resolution (512, 768, 1024) video prediction at 81 frames, trained at 16 frames per second, with multilingual prediction support. |
|
39 |
+
| Wan2.1-Fun-14B-Control | 47.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-Control) | [😄Link](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-Control) | Wan2.1-Fun-14B video control weights, supporting various control conditions such as Canny, Depth, Pose, MLSD, etc., and trajectory control. Supports multi-resolution (512, 768, 1024) video prediction at 81 frames, trained at 16 frames per second, with multilingual prediction support. |
|
40 |
+
|
41 |
+
# Video Result
|
42 |
+
|
43 |
+
### Wan2.1-Fun-14B-InP && Wan2.1-Fun-1.3B-InP
|
44 |
+
|
45 |
+
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
46 |
+
<tr>
|
47 |
+
<td>
|
48 |
+
<video src="https://github.com/user-attachments/assets/bd72a276-e60e-4b5d-86c1-d0f67e7425b9" width="100%" controls autoplay loop></video>
|
49 |
+
</td>
|
50 |
+
<td>
|
51 |
+
<video src="https://github.com/user-attachments/assets/cb7aef09-52c2-4973-80b4-b2fb63425044" width="100%" controls autoplay loop></video>
|
52 |
+
</td>
|
53 |
+
<td>
|
54 |
+
<video src="https://github.com/user-attachments/assets/4e10d491-f1cf-4b08-a7c5-1e01e5418140" width="100%" controls autoplay loop></video>
|
55 |
+
</td>
|
56 |
+
<td>
|
57 |
+
<video src="https://github.com/user-attachments/assets/f7e363a9-be09-4b72-bccf-cce9c9ebeb9b" width="100%" controls autoplay loop></video>
|
58 |
+
</td>
|
59 |
+
</tr>
|
60 |
+
</table>
|
61 |
+
|
62 |
+
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
63 |
+
<tr>
|
64 |
+
<td>
|
65 |
+
<video src="https://github.com/user-attachments/assets/28f3e720-8acc-4f22-a5d0-ec1c571e9466" width="100%" controls autoplay loop></video>
|
66 |
+
</td>
|
67 |
+
<td>
|
68 |
+
<video src="https://github.com/user-attachments/assets/fb6e4cb9-270d-47cd-8501-caf8f3e91b5c" width="100%" controls autoplay loop></video>
|
69 |
+
</td>
|
70 |
+
<td>
|
71 |
+
<video src="https://github.com/user-attachments/assets/989a4644-e33b-4f0c-b68e-2ff6ba37ac7e" width="100%" controls autoplay loop></video>
|
72 |
+
</td>
|
73 |
+
<td>
|
74 |
+
<video src="https://github.com/user-attachments/assets/9c604fa7-8657-49d1-8066-b5bb198b28b6" width="100%" controls autoplay loop></video>
|
75 |
+
</td>
|
76 |
+
</tr>
|
77 |
+
</table>
|
78 |
+
|
79 |
+
### Wan2.1-Fun-14B-Control && Wan2.1-Fun-1.3B-Control
|
80 |
+
|
81 |
+
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
82 |
+
<tr>
|
83 |
+
<td>
|
84 |
+
<video src="https://github.com/user-attachments/assets/f35602c4-9f0a-4105-9762-1e3a88abbac6" width="100%" controls autoplay loop></video>
|
85 |
+
</td>
|
86 |
+
<td>
|
87 |
+
<video src="https://github.com/user-attachments/assets/8b0f0e87-f1be-4915-bb35-2d53c852333e" width="100%" controls autoplay loop></video>
|
88 |
+
</td>
|
89 |
+
<td>
|
90 |
+
<video src="https://github.com/user-attachments/assets/972012c1-772b-427a-bce6-ba8b39edcfad" width="100%" controls autoplay loop></video>
|
91 |
+
</td>
|
92 |
+
<tr>
|
93 |
+
</table>
|
94 |
+
|
95 |
+
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
96 |
+
<tr>
|
97 |
+
<td>
|
98 |
+
<video src="https://github.com/user-attachments/assets/53002ce2-dd18-4d4f-8135-b6f68364cabd" width="100%" controls autoplay loop></video>
|
99 |
+
</td>
|
100 |
+
<td>
|
101 |
+
<video src="https://github.com/user-attachments/assets/a1a07cf8-d86d-4cd2-831f-18a6c1ceee1d" width="100%" controls autoplay loop></video>
|
102 |
+
</td>
|
103 |
+
<td>
|
104 |
+
<video src="https://github.com/user-attachments/assets/3224804f-342d-4947-918d-d9fec8e3d273" width="100%" controls autoplay loop></video>
|
105 |
+
</td>
|
106 |
+
<tr>
|
107 |
+
<td>
|
108 |
+
<video src="https://github.com/user-attachments/assets/c6c5d557-9772-483e-ae47-863d8a26db4a" width="100%" controls autoplay loop></video>
|
109 |
+
</td>
|
110 |
+
<td>
|
111 |
+
<video src="https://github.com/user-attachments/assets/af617971-597c-4be4-beb5-f9e8aaca2d14" width="100%" controls autoplay loop></video>
|
112 |
+
</td>
|
113 |
+
<td>
|
114 |
+
<video src="https://github.com/user-attachments/assets/8411151e-f491-4264-8368-7fc3c5a6992b" width="100%" controls autoplay loop></video>
|
115 |
+
</td>
|
116 |
+
</tr>
|
117 |
+
</table>
|
118 |
+
|
119 |
+
# Quick Start
|
120 |
+
### 1. Cloud usage: AliyunDSW/Docker
|
121 |
+
#### a. From AliyunDSW
|
122 |
+
DSW has free GPU time, which can be applied once by a user and is valid for 3 months after applying.
|
123 |
+
|
124 |
+
Aliyun provide free GPU time in [Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1), get it and use in Aliyun PAI-DSW to start CogVideoX-Fun within 5min!
|
125 |
+
|
126 |
+
[](https://gallery.pai-ml.com/#/preview/deepLearning/cv/cogvideox_fun)
|
127 |
+
|
128 |
+
#### b. From ComfyUI
|
129 |
+
Our ComfyUI is as follows, please refer to [ComfyUI README](comfyui/README.md) for details.
|
130 |
+

|
131 |
+
|
132 |
+
#### c. From docker
|
133 |
+
If you are using docker, please make sure that the graphics card driver and CUDA environment have been installed correctly in your machine.
|
134 |
+
|
135 |
+
Then execute the following commands in this way:
|
136 |
+
|
137 |
+
```
|
138 |
+
# pull image
|
139 |
+
docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
|
140 |
+
|
141 |
+
# enter image
|
142 |
+
docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
|
143 |
+
|
144 |
+
# clone code
|
145 |
+
git clone https://github.com/aigc-apps/CogVideoX-Fun.git
|
146 |
+
|
147 |
+
# enter CogVideoX-Fun's dir
|
148 |
+
cd CogVideoX-Fun
|
149 |
+
|
150 |
+
# download weights
|
151 |
+
mkdir models/Diffusion_Transformer
|
152 |
+
mkdir models/Personalized_Model
|
153 |
+
|
154 |
+
# Please use the hugginface link or modelscope link to download the model.
|
155 |
+
# CogVideoX-Fun
|
156 |
+
# https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP
|
157 |
+
# https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-InP
|
158 |
+
|
159 |
+
# Wan
|
160 |
+
# https://huggingface.co/alibaba-pai/Wan2.1-Fun-14B-InP
|
161 |
+
# https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP
|
162 |
+
```
|
163 |
+
|
164 |
+
### 2. Local install: Environment Check/Downloading/Installation
|
165 |
+
#### a. Environment Check
|
166 |
+
We have verified this repo execution on the following environment:
|
167 |
+
|
168 |
+
The detailed of Windows:
|
169 |
+
- OS: Windows 10
|
170 |
+
- python: python3.10 & python3.11
|
171 |
+
- pytorch: torch2.2.0
|
172 |
+
- CUDA: 11.8 & 12.1
|
173 |
+
- CUDNN: 8+
|
174 |
+
- GPU: Nvidia-3060 12G & Nvidia-3090 24G
|
175 |
+
|
176 |
+
The detailed of Linux:
|
177 |
+
- OS: Ubuntu 20.04, CentOS
|
178 |
+
- python: python3.10 & python3.11
|
179 |
+
- pytorch: torch2.2.0
|
180 |
+
- CUDA: 11.8 & 12.1
|
181 |
+
- CUDNN: 8+
|
182 |
+
- GPU:Nvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G
|
183 |
+
|
184 |
+
We need about 60GB available on disk (for saving weights), please check!
|
185 |
+
|
186 |
+
#### b. Weights
|
187 |
+
We'd better place the [weights](#model-zoo) along the specified path:
|
188 |
+
|
189 |
+
```
|
190 |
+
📦 models/
|
191 |
+
├── 📂 Diffusion_Transformer/
|
192 |
+
│ ├── 📂 CogVideoX-Fun-V1.1-2b-InP/
|
193 |
+
│ ├── 📂 CogVideoX-Fun-V1.1-5b-InP/
|
194 |
+
│ ├── 📂 Wan2.1-Fun-14B-InP
|
195 |
+
│ └── 📂 Wan2.1-Fun-1.3B-InP/
|
196 |
+
├── 📂 Personalized_Model/
|
197 |
+
│ └── your trained trainformer model / your trained lora model (for UI load)
|
198 |
+
```
|
199 |
+
|
200 |
+
# How to Use
|
201 |
+
|
202 |
+
<h3 id="video-gen">1. Generation</h3>
|
203 |
+
|
204 |
+
#### a. GPU Memory Optimization
|
205 |
+
Since Wan2.1 has a very large number of parameters, we need to consider memory optimization strategies to adapt to consumer-grade GPUs. We provide `GPU_memory_mode` for each prediction file, allowing you to choose between `model_cpu_offload`, `model_cpu_offload_and_qfloat8`, and `sequential_cpu_offload`. This solution is also applicable to CogVideoX-Fun generation.
|
206 |
+
|
207 |
+
- `model_cpu_offload`: The entire model is moved to the CPU after use, saving some GPU memory.
|
208 |
+
- `model_cpu_offload_and_qfloat8`: The entire model is moved to the CPU after use, and the transformer model is quantized to float8, saving more GPU memory.
|
209 |
+
- `sequential_cpu_offload`: Each layer of the model is moved to the CPU after use. It is slower but saves a significant amount of GPU memory.
|
210 |
+
|
211 |
+
`qfloat8` may slightly reduce model performance but saves more GPU memory. If you have sufficient GPU memory, it is recommended to use `model_cpu_offload`.
|
212 |
+
|
213 |
+
#### b. Using ComfyUI
|
214 |
+
For details, refer to [ComfyUI README](comfyui/README.md).
|
215 |
+
|
216 |
+
#### c. Running Python Files
|
217 |
+
- **Step 1**: Download the corresponding [weights](#model-zoo) and place them in the `models` folder.
|
218 |
+
- **Step 2**: Use different files for prediction based on the weights and prediction goals. This library currently supports CogVideoX-Fun, Wan2.1, and Wan2.1-Fun. Different models are distinguished by folder names under the `examples` folder, and their supported features vary. Use them accordingly. Below is an example using CogVideoX-Fun:
|
219 |
+
- **Text-to-Video**:
|
220 |
+
- Modify `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_t2v.py`.
|
221 |
+
- Run the file `examples/cogvideox_fun/predict_t2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos`.
|
222 |
+
- **Image-to-Video**:
|
223 |
+
- Modify `validation_image_start`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_i2v.py`.
|
224 |
+
- `validation_image_start` is the starting image of the video, and `validation_image_end` is the ending image of the video.
|
225 |
+
- Run the file `examples/cogvideox_fun/predict_i2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_i2v`.
|
226 |
+
- **Video-to-Video**:
|
227 |
+
- Modify `validation_video`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_v2v.py`.
|
228 |
+
- `validation_video` is the reference video for video-to-video generation. You can use the following demo video: [Demo Video](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/play_guitar.mp4).
|
229 |
+
- Run the file `examples/cogvideox_fun/predict_v2v.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_v2v`.
|
230 |
+
- **Controlled Video Generation (Canny, Pose, Depth, etc.)**:
|
231 |
+
- Modify `control_video`, `validation_image_end`, `prompt`, `neg_prompt`, `guidance_scale`, and `seed` in the file `examples/cogvideox_fun/predict_v2v_control.py`.
|
232 |
+
- `control_video` is the control video extracted using operators such as Canny, Pose, or Depth. You can use the following demo video: [Demo Video](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1.1/pose.mp4).
|
233 |
+
- Run the file `examples/cogvideox_fun/predict_v2v_control.py` and wait for the results. The generated videos will be saved in the folder `samples/cogvideox-fun-videos_v2v_control`.
|
234 |
+
- **Step 3**: If you want to integrate other backbones or Loras trained by yourself, modify `lora_path` and relevant paths in `examples/{model_name}/predict_t2v.py` or `examples/{model_name}/predict_i2v.py` as needed.
|
235 |
+
|
236 |
+
#### d. Using the Web UI
|
237 |
+
The web UI supports text-to-video, image-to-video, video-to-video, and controlled video generation (Canny, Pose, Depth, etc.). This library currently supports CogVideoX-Fun, Wan2.1, and Wan2.1-Fun. Different models are distinguished by folder names under the `examples` folder, and their supported features vary. Use them accordingly. Below is an example using CogVideoX-Fun:
|
238 |
+
|
239 |
+
- **Step 1**: Download the corresponding [weights](#model-zoo) and place them in the `models` folder.
|
240 |
+
- **Step 2**: Run the file `examples/cogvideox_fun/app.py` to access the Gradio interface.
|
241 |
+
- **Step 3**: Select the generation model on the page, fill in `prompt`, `neg_prompt`, `guidance_scale`, and `seed`, click "Generate," and wait for the results. The generated videos will be saved in the `sample` folder.
|
242 |
+
|
243 |
+
# Reference
|
244 |
+
- CogVideo: https://github.com/THUDM/CogVideo/
|
245 |
+
- EasyAnimate: https://github.com/aigc-apps/EasyAnimate
|
246 |
+
- Wan2.1: https://github.com/Wan-Video/Wan2.1/
|
247 |
+
|
248 |
+
# License
|
249 |
+
This project is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
|
Wan2.1_VAE.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38071ab59bd94681c686fa51d75a1968f64e470262043be31f7a094e442fd981
|
3 |
+
size 507609880
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "WanTransformer3DModel",
|
3 |
+
"_diffusers_version": "0.31.0",
|
4 |
+
"cross_attn_norm": true,
|
5 |
+
"dim": 5120,
|
6 |
+
"eps": 1e-06,
|
7 |
+
"ffn_dim": 13824,
|
8 |
+
"freq_dim": 256,
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"in_channels": 36,
|
11 |
+
"in_dim": 48,
|
12 |
+
"model_type": "i2v",
|
13 |
+
"num_heads": 40,
|
14 |
+
"num_layers": 40,
|
15 |
+
"out_dim": 16,
|
16 |
+
"patch_size": [
|
17 |
+
1,
|
18 |
+
2,
|
19 |
+
2
|
20 |
+
],
|
21 |
+
"qk_norm": true,
|
22 |
+
"text_dim": 4096,
|
23 |
+
"text_len": 512,
|
24 |
+
"window_size": [
|
25 |
+
-1,
|
26 |
+
-1
|
27 |
+
],
|
28 |
+
"add_ref_conv": true
|
29 |
+
}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework": "pytorch", "task": "others", "allow_remote": true}
|
models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:628c9998b613391f193eb67ff68da9667d75f492911e4eb3decf23460a158c38
|
3 |
+
size 4772359047
|
models_t5_umt5-xxl-enc-bf16.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cace0da2b446bbbbc57d031ab6cf163a3d59b366da94e5afe36745b746fd81d
|
3 |
+
size 11361920418
|