Update README.md
Browse files
README.md
CHANGED
@@ -4,4 +4,46 @@ datasets:
|
|
4 |
pipeline_tag: text-generation
|
5 |
tags:
|
6 |
- llama
|
7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
pipeline_tag: text-generation
|
5 |
tags:
|
6 |
- llama
|
7 |
+
---
|
8 |
+
|
9 |
+
Sure, here's an updated version of the model card with the inclusion of hypothetical performance metrics for the fine-tuned Llama 2 model:
|
10 |
+
|
11 |
+
---
|
12 |
+
|
13 |
+
# Model Card: Fine-tuning Llama 2 for AI2SQL Query Generation
|
14 |
+
|
15 |
+
This model card outlines the fine-tuning of the Llama 2 model to generate SQL queries for AI2SQL tasks.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
- **Original Model:** NousResearch/Llama-2-7b-chat-hf
|
19 |
+
- **Model Type:** Large Language Model
|
20 |
+
- **Fine-tuning Task:** AI2SQL (SQL Query Generation)
|
21 |
+
- **Fine-tuned Model Name:** llama-2-7b-miniguanaco
|
22 |
+
|
23 |
+
## Implementation
|
24 |
+
- **Environment Requirement:** GPU-supported platform with minimum 20GB RAM.
|
25 |
+
- **Dependencies:** accelerate==0.21.0, peft==0.4.0, bitsandbytes==0.40.2, transformers==4.31.0, trl==0.4.7
|
26 |
+
- **GPU Specification:** T4 or equivalent (as of 24 Aug 2023)
|
27 |
+
|
28 |
+
## Training Details
|
29 |
+
- **Dataset:** WikiSQL
|
30 |
+
- **Method:** Supervised Fine-Tuning (SFT)
|
31 |
+
- **Epochs:** 1
|
32 |
+
- **Batch Size:** 4 per GPU
|
33 |
+
- **Optimization:** AdamW with cosine learning rate schedule
|
34 |
+
- **Learning Rate:** 2e-4
|
35 |
+
- **Special Features:**
|
36 |
+
- LoRA for efficient parameter adjustment.
|
37 |
+
- 4-bit precision model loading with BitsAndBytes.
|
38 |
+
- Gradient checkpointing and clipping.
|
39 |
+
|
40 |
+
## Performance Metrics
|
41 |
+
- **Accuracy:** 85% (on a held-out test set from WikiSQL)
|
42 |
+
- **Query Generation Time:** Average of 0.5 seconds per query
|
43 |
+
- **Resource Efficiency:** Demonstrates 30% reduced memory usage compared to the base model
|
44 |
+
|
45 |
+
## Usage and Applications
|
46 |
+
TBD
|
47 |
+
|
48 |
+
|
49 |
+
Note: The performance metrics provided here are hypothetical and for illustrative purposes only. Actual performance would depend on various factors, including the specifics of the dataset and training regimen.
|