mergisi commited on
Commit
53d7beb
·
1 Parent(s): 6ccb87e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -1
README.md CHANGED
@@ -4,4 +4,46 @@ datasets:
4
  pipeline_tag: text-generation
5
  tags:
6
  - llama
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  pipeline_tag: text-generation
5
  tags:
6
  - llama
7
+ ---
8
+
9
+ Sure, here's an updated version of the model card with the inclusion of hypothetical performance metrics for the fine-tuned Llama 2 model:
10
+
11
+ ---
12
+
13
+ # Model Card: Fine-tuning Llama 2 for AI2SQL Query Generation
14
+
15
+ This model card outlines the fine-tuning of the Llama 2 model to generate SQL queries for AI2SQL tasks.
16
+
17
+ ## Model Details
18
+ - **Original Model:** NousResearch/Llama-2-7b-chat-hf
19
+ - **Model Type:** Large Language Model
20
+ - **Fine-tuning Task:** AI2SQL (SQL Query Generation)
21
+ - **Fine-tuned Model Name:** llama-2-7b-miniguanaco
22
+
23
+ ## Implementation
24
+ - **Environment Requirement:** GPU-supported platform with minimum 20GB RAM.
25
+ - **Dependencies:** accelerate==0.21.0, peft==0.4.0, bitsandbytes==0.40.2, transformers==4.31.0, trl==0.4.7
26
+ - **GPU Specification:** T4 or equivalent (as of 24 Aug 2023)
27
+
28
+ ## Training Details
29
+ - **Dataset:** WikiSQL
30
+ - **Method:** Supervised Fine-Tuning (SFT)
31
+ - **Epochs:** 1
32
+ - **Batch Size:** 4 per GPU
33
+ - **Optimization:** AdamW with cosine learning rate schedule
34
+ - **Learning Rate:** 2e-4
35
+ - **Special Features:**
36
+ - LoRA for efficient parameter adjustment.
37
+ - 4-bit precision model loading with BitsAndBytes.
38
+ - Gradient checkpointing and clipping.
39
+
40
+ ## Performance Metrics
41
+ - **Accuracy:** 85% (on a held-out test set from WikiSQL)
42
+ - **Query Generation Time:** Average of 0.5 seconds per query
43
+ - **Resource Efficiency:** Demonstrates 30% reduced memory usage compared to the base model
44
+
45
+ ## Usage and Applications
46
+ TBD
47
+
48
+
49
+ Note: The performance metrics provided here are hypothetical and for illustrative purposes only. Actual performance would depend on various factors, including the specifics of the dataset and training regimen.