File size: 16,456 Bytes
16ffc97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import os
import sys
import time
import argparse
import logging
import numpy as np
import onnxruntime as ort
from transformers import AutoTokenizer
from tqdm import tqdm
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
class ONNXGenerationChatbot:
def __init__(self, model_path, max_length=100):
"""
Initialize the ONNX chatbot for text generation.
Args:
model_path: Path to the directory containing the ONNX model and tokenizer
max_length: Maximum sequence length for generation
"""
# Set up model paths
self.model_dir = model_path
self.onnx_path = os.path.join(self.model_dir, "model.onnx")
self.fp32_path = os.path.join(self.model_dir, "model_fp32.onnx")
# Check for model files
if not os.path.exists(self.onnx_path):
raise FileNotFoundError(f"ONNX model not found at {self.onnx_path}")
# Get model name for prompt formatting
self.model_name = os.path.basename(os.path.normpath(model_path))
logger.info(f"Using model: {self.model_name}")
# Load tokenizer
logger.info(f"Loading tokenizer from {self.model_dir}...")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir, local_files_only=True)
# Ensure tokenizer has necessary tokens
if self.tokenizer.pad_token is None and hasattr(self.tokenizer, 'eos_token'):
self.tokenizer.pad_token = self.tokenizer.eos_token
# Create optimized session
logger.info(f"Loading ONNX model from {self.onnx_path}...")
self.session_options = ort.SessionOptions()
self.session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
self.session_options.intra_op_num_threads = 4 # Adjust based on your CPU
# Create session with appropriate providers
providers = ['CPUExecutionProvider']
if 'CUDAExecutionProvider' in ort.get_available_providers():
logger.info("CUDA is available! Using GPU acceleration.")
providers.insert(0, 'CUDAExecutionProvider')
self.session = ort.InferenceSession(
self.onnx_path,
sess_options=self.session_options,
providers=providers
)
# Get input and output names from the model
self.input_names = [input.name for input in self.session.get_inputs()]
self.output_names = [output.name for output in self.session.get_outputs()]
logger.info(f"Model inputs: {self.input_names}")
logger.info(f"Model outputs: {self.output_names}")
# Settings
self.max_length = max_length
self.stop_tokens = [self.tokenizer.eos_token_id] if self.tokenizer.eos_token_id is not None else []
# Try to add common stop tokens if they exist in the vocabulary
stop_words = ["<|endoftext|>", "</s>", "<|end|>"]
for word in stop_words:
try:
token_id = self.tokenizer.convert_tokens_to_ids(word)
if token_id not in self.stop_tokens and token_id != self.tokenizer.unk_token_id:
self.stop_tokens.append(token_id)
except:
pass
logger.info(f"Using stop tokens: {self.stop_tokens}")
# Conversation history for context
self.conversation_history = []
def get_prompt_template(self):
"""
Get the appropriate prompt template based on the model type.
"""
if "opt" in self.model_name.lower():
return "Human: {}\nAssistant:"
elif "pythia" in self.model_name.lower():
return "USER: {}\nASSISTANT:"
elif "llama" in self.model_name.lower() or "alpaca" in self.model_name.lower():
return "### Human: {}\n### Assistant:"
elif "gpt2" in self.model_name.lower() or "distilgpt2" in self.model_name.lower():
return "User: {}\nBot:"
else:
return "Question: {}\nAnswer:"
def format_prompt_with_history(self, user_message):
"""
Format the prompt with conversation history for better context.
"""
template = self.get_prompt_template()
parts = template.split("{}")
prefix = parts[0]
suffix = parts[1] if len(parts) > 1 else ""
# Include history if available (up to 3 turns)
formatted_prompt = ""
for i, (user, bot) in enumerate(self.conversation_history[-3:]):
formatted_prompt += f"{prefix}{user}{suffix} {bot}\n\n"
# Add current user message
formatted_prompt += f"{prefix}{user_message}{suffix}"
return formatted_prompt
def run_inference_step(self, input_ids, attention_mask=None):
"""
Run a single inference step with the ONNX model.
Args:
input_ids: Token IDs of the input sequence
attention_mask: Attention mask for the input sequence
Returns:
numpy array: Logits for the next token prediction
"""
# Prepare model inputs
model_inputs = {}
for name in self.input_names:
if name == "input_ids":
model_inputs[name] = input_ids
elif name == "attention_mask" and attention_mask is not None:
model_inputs[name] = attention_mask
# Run inference
outputs = self.session.run(self.output_names, model_inputs)
# Return logits (assumes first output is logits)
return outputs[0]
def generate_text(self, prompt, max_new_tokens=50, temperature=0.7, top_k=50, top_p=0.9,
repetition_penalty=1.1, do_sample=True, show_progress=True):
"""
Generate text using the ONNX model.
Args:
prompt: Text prompt to generate from
max_new_tokens: Maximum number of tokens to generate
temperature: Temperature for sampling (higher = more random)
top_k: Number of highest probability tokens to keep for sampling
top_p: Cumulative probability threshold for nucleus sampling
repetition_penalty: Penalty for repeating tokens
do_sample: Whether to sample from the distribution or use greedy decoding
show_progress: Whether to show a progress bar during generation
Returns:
str: Generated text
"""
# Encode the prompt
encoded = self.tokenizer(prompt, return_tensors="np")
input_ids = encoded["input_ids"]
attention_mask = encoded["attention_mask"]
# Track input tokens for repetition penalty
prev_tokens = input_ids[0].tolist()
# Setup progress bar if requested
progress = tqdm(total=max_new_tokens, desc="Generating") if show_progress else None
# Generate tokens auto-regressively
for _ in range(max_new_tokens):
# Run inference to get next token logits
logits = self.run_inference_step(input_ids, attention_mask)
# Get logits for the last token
next_token_logits = logits[0, -1, :]
# Apply temperature scaling
if temperature > 0:
next_token_logits = next_token_logits / max(temperature, 1e-8)
# Apply repetition penalty
if repetition_penalty > 1.0:
for prev_token in set(prev_tokens[-10:]): # Only consider recent tokens
if prev_token < len(next_token_logits):
next_token_logits[prev_token] /= repetition_penalty
# Apply top-k filtering
if top_k > 0:
indices_to_remove = np.argsort(next_token_logits)[:-top_k]
next_token_logits[indices_to_remove] = -float('inf')
# Apply top-p (nucleus) filtering
if 0 < top_p < 1.0:
sorted_logits = np.sort(next_token_logits)[::-1]
sorted_indices = np.argsort(next_token_logits)[::-1]
cumulative_probs = np.cumsum(np.exp(sorted_logits) / np.sum(np.exp(sorted_logits)))
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = sorted_indices[cumulative_probs > top_p]
next_token_logits[sorted_indices_to_remove] = -float('inf')
# Sample from the filtered distribution or use greedy decoding
if do_sample:
# Apply softmax to get probabilities
probs = np.exp(next_token_logits - np.max(next_token_logits))
probs = probs / np.sum(probs)
# Handle NaNs
if np.isnan(probs).any():
next_token_id = np.argmax(next_token_logits)
else:
try:
# Sample from the distribution
next_token_id = np.random.choice(len(probs), p=probs)
except:
# Fallback to greedy if sampling fails
next_token_id = np.argmax(next_token_logits)
else:
# Greedy decoding - take highest probability token
next_token_id = np.argmax(next_token_logits)
# Add the chosen token to the input
next_token = np.array([[next_token_id]])
input_ids = np.concatenate([input_ids, next_token], axis=1)
# Update attention mask
attention_mask = np.ones((1, input_ids.shape[1]), dtype=np.int64)
# Add token to history for repetition penalty
prev_tokens.append(int(next_token_id))
# Update progress bar if active
if progress is not None:
progress.update(1)
# Check for stop tokens or end of text
if next_token_id in self.stop_tokens:
break
# Also stop if we exceed max length
if input_ids.shape[1] >= self.max_length:
break
# Close progress bar if used
if progress is not None:
progress.close()
# Decode the full sequence
generated_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
return generated_text
def extract_assistant_response(self, full_text, prompt):
"""
Extract just the assistant's response from the full generated text.
Args:
full_text: Full generated text including prompt
prompt: The original prompt
Returns:
str: Just the assistant's response
"""
# Try to extract based on the prompt format
template = self.get_prompt_template()
response_start_marker = template.split("{}")[-1]
# If the prompt is in the text, extract everything after it
if prompt in full_text:
after_prompt = full_text[len(prompt):]
# Handle additional newlines or spaces at the beginning
return after_prompt.lstrip()
# If the response marker is in the text, extract everything after it
if response_start_marker.strip() in full_text:
parts = full_text.split(response_start_marker.strip(), 1)
if len(parts) > 1:
return parts[1].strip()
# Fallback: return everything after the last line of the prompt
prompt_last_line = prompt.strip().split('\n')[-1]
if prompt_last_line in full_text:
parts = full_text.split(prompt_last_line, 1)
if len(parts) > 1:
return parts[1].strip()
# Last resort: return the whole thing
return full_text
def chat(self, temperature=0.7, max_new_tokens=100):
"""
Run an interactive chat session with the model.
Args:
temperature: Temperature for text generation
max_new_tokens: Maximum number of tokens to generate per response
"""
print("\n===== ONNX Generation Chatbot =====")
print(f"Model: {self.model_name}")
print(f"Type 'exit' to end the conversation")
print(f"Type 'reset' to clear conversation history")
while True:
# Get user input
user_input = input("\nYou: ")
# Check for exit command
if user_input.lower() in ["exit", "quit", "bye"]:
print("Goodbye!")
break
# Check for reset command
if user_input.lower() == "reset":
self.conversation_history = []
print("Conversation history cleared.")
continue
# Create prompt with history
prompt = self.format_prompt_with_history(user_input)
print("\nGenerating response...")
# Generate text
try:
start_time = time.time()
full_text = self.generate_text(
prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
show_progress=True
)
# Extract just the assistant's response
response = self.extract_assistant_response(full_text, prompt)
# Clean up any trailing incomplete sentences
if response and len(response) > 0:
# Try to end at a sentence boundary if possible
sentence_end = max(
response.rfind('.'),
response.rfind('!'),
response.rfind('?')
)
if sentence_end > len(response) * 0.5: # Only trim if we're not losing too much
response = response[:sentence_end+1]
# Calculate generation time
gen_time = time.time() - start_time
gen_speed = max_new_tokens / gen_time if gen_time > 0 else 0
# Print the response
print(f"\nBot: {response}")
print(f"\n[Generated {len(response)} chars in {gen_time:.2f}s ({gen_speed:.1f} tokens/sec)]")
# Add to conversation history
self.conversation_history.append((user_input, response))
# Keep history at a reasonable size
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
print("\nBot: I encountered an error while generating a response. Let's try again.")
def main():
"""Run the ONNX chatbot with command line arguments."""
parser = argparse.ArgumentParser(description="Interactive ONNX Chatbot")
parser.add_argument("--model", type=str, required=True,
help="Path to the ONNX model directory")
parser.add_argument("--temperature", type=float, default=0.7,
help="Temperature for text generation (default: 0.7)")
parser.add_argument("--max_tokens", type=int, default=100,
help="Maximum tokens to generate per response (default: 100)")
args = parser.parse_args()
try:
# Create and run the chatbot
chatbot = ONNXGenerationChatbot(args.model)
chatbot.chat(temperature=args.temperature, max_new_tokens=args.max_tokens)
except KeyboardInterrupt:
print("\nExiting chatbot. Goodbye!")
except Exception as e:
logger.error(f"Error: {str(e)}")
sys.exit(1)
if __name__ == "__main__":
main() |