File size: 9,658 Bytes
16ffc97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import gc
import sys
import time
import logging
import traceback
import torch
import warnings
from transformers import AutoModelForCausalLM, AutoTokenizer
from onnxruntime.quantization import quantize_dynamic, QuantType
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning, message=".*The shape of the input dimension.*")
warnings.filterwarnings("ignore", category=UserWarning, message=".*Converting a tensor to a Python.*")
# Models that are known to work well with ONNX conversion
RELIABLE_MODELS = [
{
"id": "facebook/opt-350m",
"description": "Well-balanced model (350M) for RAG and chatbots"
},
{
"id": "gpt2",
"description": "Very reliable model (124M) with excellent ONNX compatibility"
},
{
"id": "distilgpt2",
"description": "Lightweight (82M) model with good performance"
}
]
class ModelWrapper(torch.nn.Module):
"""
Wrapper to handle ONNX export compatibility issues.
This wrapper specifically:
1. Bypasses cache handling
2. Simplifies the forward pass to avoid dynamic operations
"""
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, input_ids):
# Force no cache, no gradient, and no special features
with torch.no_grad():
return self.model(input_ids=input_ids, use_cache=False, return_dict=False)[0]
def convert_model(model_id, output_dir, quantize=True):
"""Convert a model to ONNX format with maximum compatibility."""
start_time = time.time()
logger.info(f"\n{'=' * 60}")
logger.info(f"Converting {model_id} to ONNX")
logger.info(f"{'=' * 60}")
# Create output directory
model_name = model_id.split("/")[-1]
model_dir = os.path.join(output_dir, model_name)
os.makedirs(model_dir, exist_ok=True)
try:
# Step 1: Load tokenizer
logger.info("Step 1/5: Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Handle missing pad token
if tokenizer.pad_token is None and hasattr(tokenizer, 'eos_token'):
logger.info("Adding pad_token = eos_token")
tokenizer.pad_token = tokenizer.eos_token
# Save tokenizer
tokenizer.save_pretrained(model_dir)
logger.info(f"β Tokenizer saved to {model_dir}")
# Step 2: Load model with memory optimizations
logger.info("Step 2/5: Loading model with memory optimizations...")
# Clean memory before loading
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# Load model with optimizations
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16, # Use half precision
low_cpu_mem_usage=True # Reduce memory usage
)
# Save config for reference
model.config.save_pretrained(model_dir)
logger.info(f"β Model config saved to {model_dir}")
# Step 3: Prepare for export
logger.info("Step 3/5: Preparing for export...")
# Wrap model to avoid tracing issues
wrapped_model = ModelWrapper(model)
wrapped_model.eval() # Set to evaluation mode
# Clean memory again
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# Step 4: Export to ONNX
logger.info("Step 4/5: Exporting to ONNX format...")
onnx_path = os.path.join(model_dir, "model.onnx")
# Create dummy input
batch_size = 1
seq_length = 8 # Small sequence length to reduce memory
dummy_input = torch.ones(batch_size, seq_length, dtype=torch.long)
# Export to ONNX format with new opset version
torch.onnx.export(
wrapped_model, # Use wrapped model
dummy_input, # Model input
onnx_path, # Output path
export_params=True, # Store model weights
opset_version=14, # ONNX opset version (changed from 13 to 14)
do_constant_folding=True, # Optimize constants
input_names=['input_ids'], # Input names
output_names=['logits'], # Output names
dynamic_axes={
'input_ids': {0: 'batch_size', 1: 'sequence'},
'logits': {0: 'batch_size', 1: 'sequence'}
}
)
# Clean up to save memory
del model
del wrapped_model
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# Verify export was successful
if os.path.exists(onnx_path):
size_mb = os.path.getsize(onnx_path) / (1024 * 1024)
logger.info(f"β ONNX model saved to {onnx_path}")
logger.info(f"β Original size: {size_mb:.2f} MB")
# Step 5: Quantize
if quantize:
logger.info("Step 5/5: Applying int8 quantization...")
quant_path = onnx_path.replace(".onnx", "_quantized.onnx")
try:
quantize_dynamic(
model_input=onnx_path,
model_output=quant_path,
per_channel=False,
reduce_range=False,
weight_type=QuantType.QInt8
)
if os.path.exists(quant_path):
quant_size = os.path.getsize(quant_path) / (1024 * 1024)
logger.info(f"β Quantized size: {quant_size:.2f} MB")
logger.info(f"β Size reduction: {(1 - quant_size/size_mb) * 100:.1f}%")
# Replace original with quantized to save space
os.replace(quant_path, onnx_path)
logger.info("β Replaced original with quantized version")
else:
logger.warning("β Quantized file not created, using original")
except Exception as e:
logger.error(f"β Quantization error: {str(e)}")
logger.info("β Using original model without quantization")
else:
logger.info("Step 5/5: Skipping quantization (not requested)")
# Calculate elapsed time
end_time = time.time()
duration = end_time - start_time
logger.info(f"β Conversion completed in {duration:.2f} seconds")
return {
"success": True,
"model_id": model_id,
"size_mb": os.path.getsize(onnx_path) / (1024 * 1024),
"duration_seconds": duration,
"output_dir": model_dir
}
else:
logger.error(f"Γ ONNX file not created at {onnx_path}")
return {
"success": False,
"model_id": model_id,
"error": "ONNX file not created"
}
except Exception as e:
logger.error(f"Γ Error converting model: {str(e)}")
logger.error(traceback.format_exc())
return {
"success": False,
"model_id": model_id,
"error": str(e)
}
def main():
"""Convert all reliable models."""
# Print header
logger.info("\nGUARANTEED ONNX CONVERTER")
logger.info("======================")
logger.info("Using reliable models with proven ONNX compatibility")
# Create output directory
output_dir = "./onnx_models"
os.makedirs(output_dir, exist_ok=True)
# Check if specific model ID provided as argument
if len(sys.argv) > 1:
model_id = sys.argv[1]
logger.info(f"Converting single model: {model_id}")
convert_model(model_id, output_dir)
return
# Convert all reliable models
results = []
for model_info in RELIABLE_MODELS:
model_id = model_info["id"]
logger.info(f"Processing model: {model_id}")
logger.info(f"Description: {model_info['description']}")
result = convert_model(model_id, output_dir)
results.append(result)
# Print summary
logger.info("\n" + "=" * 60)
logger.info("CONVERSION SUMMARY")
logger.info("=" * 60)
success_count = 0
for result in results:
if result.get("success", False):
success_count += 1
size_info = f" - Size: {result.get('size_mb', 0):.2f} MB"
time_info = f" - Time: {result.get('duration_seconds', 0):.2f}s"
logger.info(f"β SUCCESS: {result['model_id']}{size_info}{time_info}")
else:
logger.info(f"Γ FAILED: {result['model_id']} - Error: {result.get('error', 'Unknown error')}")
logger.info(f"\nSuccessfully converted {success_count}/{len(RELIABLE_MODELS)} models")
logger.info(f"Models saved to: {os.path.abspath(output_dir)}")
if success_count > 0:
logger.info("\nThe models are ready for RAG and chatbot applications!")
if __name__ == "__main__":
main() |