# small modification to allow negative image embeds # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from math import ceil from typing import Callable, Dict, List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection from diffusers.models import StableCascadeUNet from diffusers.schedulers import DDPMWuerstchenScheduler from diffusers.utils import BaseOutput, logging, replace_example_docstring from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.pipelines.wuerstchen.modeling_paella_vq_model import PaellaVQModel logger = logging.get_logger(__name__) # pylint: disable=invalid-name DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:] EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import StableCascadePriorPipeline >>> prior_pipe = StableCascadePriorPipeline.from_pretrained( ... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16 ... ).to("cuda") >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" >>> prior_output = pipe(prompt) ``` """ @dataclass class StableCascadePriorPipelineOutput(BaseOutput): """ Output class for WuerstchenPriorPipeline. Args: image_embeddings (`torch.Tensor` or `np.ndarray`) Prior image embeddings for text prompt prompt_embeds (`torch.Tensor`): Text embeddings for the prompt. negative_prompt_embeds (`torch.Tensor`): Text embeddings for the negative prompt. """ image_embeddings: Union[torch.Tensor, np.ndarray] prompt_embeds: Union[torch.Tensor, np.ndarray] prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] negative_prompt_embeds: Union[torch.Tensor, np.ndarray] negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] class StableCascadePriorPipeline_DoE(DiffusionPipeline): """ Pipeline for generating image prior for Stable Cascade. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: prior ([`StableCascadeUNet`]): The Stable Cascade prior to approximate the image embedding from the text and/or image embedding. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). feature_extractor ([`~transformers.CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `image_encoder`. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`DDPMWuerstchenScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. resolution_multiple ('float', *optional*, defaults to 42.67): Default resolution for multiple images generated. """ unet_name = "prior" text_encoder_name = "text_encoder" model_cpu_offload_seq = "image_encoder->text_encoder->prior" _optional_components = ["image_encoder", "feature_extractor"] _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, prior: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, resolution_multiple: float = 42.67, feature_extractor: Optional[CLIPImageProcessor] = None, image_encoder: Optional[CLIPVisionModelWithProjection] = None, ) -> None: super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, image_encoder=image_encoder, feature_extractor=feature_extractor, prior=prior, scheduler=scheduler, ) self.register_to_config(resolution_multiple=resolution_multiple) def prepare_latents( self, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler ): latent_shape = ( num_images_per_prompt, self.prior.config.in_channels, ceil(height / self.config.resolution_multiple), ceil(width / self.config.resolution_multiple), ) if latents is None: latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != latent_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps def get_timestep_ratio_conditioning(self, t, alphas_cumprod): s = torch.tensor([0.003]) clamp_range = [0, 1] min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 var = alphas_cumprod[t] var = var.clamp(*clamp_range) s, min_var = s.to(var.device), min_var.to(var.device) ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s return ratio @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, height: int = 1024, width: int = 1024, num_inference_steps: int = 20, timesteps: List[float] = None, guidance_scale: float = 4.0, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, image_embeds: Optional[torch.Tensor] = None, negative_image_embeds: Optional[torch.Tensor] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pt", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 1024): The height in pixels of the generated image. width (`int`, *optional*, defaults to 1024): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 60): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 8.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input argument. image_embeds (`torch.Tensor`, *optional*): Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If not provided, image embeddings will be generated from `image` input argument if existing. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ # 0. Define commonly used variables device = self._execution_device dtype = next(self.prior.parameters()).dtype self._guidance_scale = guidance_scale # 2. caption + images image_embeds_pooled = image_embeds.repeat(num_images_per_prompt, 1, 1) # uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: uncond_image_embeds_pooled = negative_image_embeds.repeat(num_images_per_prompt, 1, 1) image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0) text_encoder_hidden_states = torch.cat([prompt_embeds, negative_prompt_embeds]) text_encoder_pooled = torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) else: image_embeds = image_embeds_pooled text_encoder_hidden_states = prompt_embeds text_encoder_pooled = prompt_embeds_pooled # 4. Prepare and set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents( height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler ) if isinstance(self.scheduler, DDPMWuerstchenScheduler): timesteps = timesteps[:-1] # 6. Run denoising loop if hasattr(self.scheduler, "betas"): alphas = 1.0 - self.scheduler.betas alphas_cumprod = torch.cumprod(alphas, dim=0) else: alphas_cumprod = [] self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): if not isinstance(self.scheduler, DDPMWuerstchenScheduler): if len(alphas_cumprod) > 0: timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) else: timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) else: timestep_ratio = t.expand(latents.size(0)).to(dtype) # 7. Denoise image embeddings predicted_image_embedding = self.prior( sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=text_encoder_pooled, clip_text=text_encoder_hidden_states, clip_img=image_embeds, return_dict=False, )[0] # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2) predicted_image_embedding = torch.lerp( predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale ) # 9. Renoise latents to next timestep if not isinstance(self.scheduler, DDPMWuerstchenScheduler): timestep_ratio = t latents = self.scheduler.step( model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # Offload all models self.maybe_free_model_hooks() if output_type == "np": latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work negative_prompt_embeds = ( negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None ) # float() as bfloat16-> numpy doesnt work if not return_dict: return ( latents, prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) return StableCascadePriorPipelineOutput( image_embeddings=latents, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, ) class StableCascadeDecoderPipeline_DoE(DiffusionPipeline): unet_name = "decoder" model_cpu_offload_seq = "decoder->vqgan" _callback_tensor_inputs = [ "latents", "prompt_embeds_pooled", "negative_prompt_embeds", "image_embeddings", ] def __init__( self, decoder: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, latent_dim_scale: float = 10.67, ) -> None: super().__init__() self.register_modules( decoder=decoder, scheduler=scheduler, vqgan=vqgan, ) self.register_to_config(latent_dim_scale=latent_dim_scale) def prepare_latents( self, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler ): _, channels, height, width = image_embeddings.shape latents_shape = ( num_images_per_prompt, 4, int(height * self.config.latent_dim_scale), int(width * self.config.latent_dim_scale), ) if latents is None: latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps def get_timestep_ratio_conditioning(self, t, alphas_cumprod): s = torch.tensor([0.003]) clamp_range = [0, 1] min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 var = alphas_cumprod[t] var = var.clamp(*clamp_range) s, min_var = s.to(var.device), min_var.to(var.device) ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s return ratio @torch.no_grad() def __call__( self, image_embeddings: Union[torch.Tensor, List[torch.Tensor]], prompt: Union[str, List[str]] = None, num_inference_steps: int = 10, guidance_scale: float = 0.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): # 0. Define commonly used variables device = self._execution_device dtype = self.decoder.dtype self._guidance_scale = guidance_scale # 1. Check inputs. Raise error if not correct if isinstance(image_embeddings, list): image_embeddings = torch.cat(image_embeddings, dim=0) # 2. Encode caption # The pooled embeds from the prior are pooled again before being passed to the decoder prompt_embeds_pooled = ( torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) if self.do_classifier_free_guidance else prompt_embeds_pooled ) effnet = ( torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) if self.do_classifier_free_guidance else image_embeddings ) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents( image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler ) if isinstance(self.scheduler, DDPMWuerstchenScheduler): timesteps = timesteps[:-1] # 6. Run denoising loop if hasattr(self.scheduler, "betas"): alphas = 1.0 - self.scheduler.betas alphas_cumprod = torch.cumprod(alphas, dim=0) else: alphas_cumprod = [] self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): if not isinstance(self.scheduler, DDPMWuerstchenScheduler): if len(alphas_cumprod) > 0: timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) else: timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) else: timestep_ratio = t.expand(latents.size(0)).to(dtype) # 7. Denoise latents predicted_latents = self.decoder( sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=prompt_embeds_pooled, effnet=effnet, return_dict=False, )[0] # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2) predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale) # 9. Renoise latents to next timestep if not isinstance(self.scheduler, DDPMWuerstchenScheduler): timestep_ratio = t latents = self.scheduler.step( model_output=predicted_latents, timestep=timestep_ratio, sample=latents, generator=generator, ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": # 10. Scale and decode the image latents with vq-vae latents = self.vqgan.config.scale_factor * latents images = self.vqgan.decode(latents).sample.clamp(0, 1) if output_type == "np": images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work elif output_type == "pil": images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work images = self.numpy_to_pil(images) else: images = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return images return ImagePipelineOutput(images)