File size: 6,124 Bytes
ecc4278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os.path
import stat
from collections import OrderedDict

from modules import shared, sd_models
from lib_controlnet.enums import StableDiffusionVersion
from modules_forge.shared import controlnet_dir, supported_preprocessors

from typing import Dict, Tuple, List

CN_MODEL_EXTS = [".pt", ".pth", ".ckpt", ".safetensors", ".bin", ".patch"]


def traverse_all_files(curr_path, model_list):
    f_list = [
        (os.path.join(curr_path, entry.name), entry.stat())
        for entry in os.scandir(curr_path)
        if os.path.isdir(curr_path)
    ]
    for f_info in f_list:
        fname, fstat = f_info
        if os.path.splitext(fname)[1] in CN_MODEL_EXTS:
            model_list.append(f_info)
        elif stat.S_ISDIR(fstat.st_mode):
            model_list = traverse_all_files(fname, model_list)
    return model_list


def get_all_models(sort_by, filter_by, path):
    res = OrderedDict()
    fileinfos = traverse_all_files(path, [])
    filter_by = filter_by.strip(" ")
    if len(filter_by) != 0:
        fileinfos = [x for x in fileinfos if filter_by.lower()
                     in os.path.basename(x[0]).lower()]
    if sort_by == "name":
        fileinfos = sorted(fileinfos, key=lambda x: os.path.basename(x[0]))
    elif sort_by == "date":
        fileinfos = sorted(fileinfos, key=lambda x: -x[1].st_mtime)
    elif sort_by == "path name":
        fileinfos = sorted(fileinfos)

    for finfo in fileinfos:
        filename = finfo[0]
        name = os.path.splitext(os.path.basename(filename))[0]
        # Prevent a hypothetical "None.pt" from being listed.
        if name != "None":
            res[name + f" [{sd_models.model_hash(filename)}]"] = filename

    return res


controlnet_filename_dict = {'None': 'model.safetensors'}
controlnet_names = ['None']


def get_preprocessor(name):
    return supported_preprocessors.get(name, None)

def get_default_preprocessor(tag):
    ps = get_filtered_preprocessor_names(tag)
    assert len(ps) > 0
    return ps[0] if len(ps) == 1 else ps[1]

def get_sorted_preprocessors():
    preprocessors = [p for k, p in supported_preprocessors.items() if k != 'None']
    preprocessors = sorted(preprocessors, key=lambda x: str(x.sorting_priority).zfill(8) + x.name)[::-1]
    results = OrderedDict()
    results['None'] = supported_preprocessors['None']
    for p in preprocessors:
        results[p.name] = p
    return results


def get_all_controlnet_names():
    return controlnet_names


def get_controlnet_filename(controlnet_name):
    return controlnet_filename_dict[controlnet_name]


def get_all_preprocessor_names():
    return list(get_sorted_preprocessors().keys())


def get_all_preprocessor_tags():
    tags = []
    for k, p in supported_preprocessors.items():
        tags += p.tags
    tags = list(set(tags))
    tags = sorted(tags)
    return ['All'] + tags


def get_filtered_preprocessors(tag):
    if tag == 'All':
        return supported_preprocessors
    return {k: v for k, v in get_sorted_preprocessors().items() if tag in v.tags or k == 'None'}


def get_filtered_preprocessor_names(tag):
    return list(get_filtered_preprocessors(tag).keys())


def get_filtered_controlnet_names(tag):
    filtered_preprocessors = get_filtered_preprocessors(tag)
    model_filename_filters = []
    for p in filtered_preprocessors.values():
        model_filename_filters += p.model_filename_filters
    return [
        x for x in controlnet_names
        if x == 'None' or (
            any(f.lower() in x.lower() for f in model_filename_filters) and
            get_sd_version().is_compatible_with(StableDiffusionVersion.detect_from_model_name(x))
        )
    ]


def update_controlnet_filenames():
    global controlnet_filename_dict, controlnet_names

    controlnet_filename_dict = {'None': 'model.safetensors'}
    controlnet_names = ['None']

    ext_dirs = (shared.opts.data.get("control_net_models_path", None), getattr(shared.cmd_opts, 'controlnet_dir', None))
    extra_lora_paths = (extra_lora_path for extra_lora_path in ext_dirs
                        if extra_lora_path is not None and os.path.exists(extra_lora_path))
    paths = [controlnet_dir, *extra_lora_paths]

    for path in paths:
        sort_by = shared.opts.data.get("control_net_models_sort_models_by", "name")
        filter_by = shared.opts.data.get("control_net_models_name_filter", "")
        found = get_all_models(sort_by, filter_by, path)
        controlnet_filename_dict.update(found)

    controlnet_names = list(controlnet_filename_dict.keys())
    return


def get_sd_version() -> StableDiffusionVersion:
    if not shared.sd_model:
        return StableDiffusionVersion.UNKNOWN
    if shared.sd_model.is_sdxl:
        return StableDiffusionVersion.SDXL
    elif shared.sd_model.is_sd2:
        return StableDiffusionVersion.SD2x
    elif shared.sd_model.is_sd1:
        return StableDiffusionVersion.SD1x
    else:
        return StableDiffusionVersion.UNKNOWN


def select_control_type(
    control_type: str,
    sd_version: StableDiffusionVersion = StableDiffusionVersion.UNKNOWN,
) -> Tuple[List[str], List[str], str, str]:
    global controlnet_names

    pattern = control_type.lower()
    all_models = list(controlnet_names)

    if pattern == "all":
        preprocessors = get_sorted_preprocessors().values()
        return [
            [p.name for p in preprocessors],
            all_models,
            'none',  # default option
            "None"   # default model
        ]

    filtered_model_list = get_filtered_controlnet_names(control_type)

    if pattern == "none":
        filtered_model_list.append("None")

    assert len(filtered_model_list) > 0, "'None' model should always be available."
    if len(filtered_model_list) == 1:
        default_model = "None"
    else:
        default_model = filtered_model_list[1]
        for x in filtered_model_list:
            if "11" in x.split("[")[0]:
                default_model = x
                break

    return (
        get_filtered_preprocessor_names(control_type),
        filtered_model_list,
        get_default_preprocessor(control_type),
        default_model
    )