File size: 6,124 Bytes
ecc4278 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os.path
import stat
from collections import OrderedDict
from modules import shared, sd_models
from lib_controlnet.enums import StableDiffusionVersion
from modules_forge.shared import controlnet_dir, supported_preprocessors
from typing import Dict, Tuple, List
CN_MODEL_EXTS = [".pt", ".pth", ".ckpt", ".safetensors", ".bin", ".patch"]
def traverse_all_files(curr_path, model_list):
f_list = [
(os.path.join(curr_path, entry.name), entry.stat())
for entry in os.scandir(curr_path)
if os.path.isdir(curr_path)
]
for f_info in f_list:
fname, fstat = f_info
if os.path.splitext(fname)[1] in CN_MODEL_EXTS:
model_list.append(f_info)
elif stat.S_ISDIR(fstat.st_mode):
model_list = traverse_all_files(fname, model_list)
return model_list
def get_all_models(sort_by, filter_by, path):
res = OrderedDict()
fileinfos = traverse_all_files(path, [])
filter_by = filter_by.strip(" ")
if len(filter_by) != 0:
fileinfos = [x for x in fileinfos if filter_by.lower()
in os.path.basename(x[0]).lower()]
if sort_by == "name":
fileinfos = sorted(fileinfos, key=lambda x: os.path.basename(x[0]))
elif sort_by == "date":
fileinfos = sorted(fileinfos, key=lambda x: -x[1].st_mtime)
elif sort_by == "path name":
fileinfos = sorted(fileinfos)
for finfo in fileinfos:
filename = finfo[0]
name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
res[name + f" [{sd_models.model_hash(filename)}]"] = filename
return res
controlnet_filename_dict = {'None': 'model.safetensors'}
controlnet_names = ['None']
def get_preprocessor(name):
return supported_preprocessors.get(name, None)
def get_default_preprocessor(tag):
ps = get_filtered_preprocessor_names(tag)
assert len(ps) > 0
return ps[0] if len(ps) == 1 else ps[1]
def get_sorted_preprocessors():
preprocessors = [p for k, p in supported_preprocessors.items() if k != 'None']
preprocessors = sorted(preprocessors, key=lambda x: str(x.sorting_priority).zfill(8) + x.name)[::-1]
results = OrderedDict()
results['None'] = supported_preprocessors['None']
for p in preprocessors:
results[p.name] = p
return results
def get_all_controlnet_names():
return controlnet_names
def get_controlnet_filename(controlnet_name):
return controlnet_filename_dict[controlnet_name]
def get_all_preprocessor_names():
return list(get_sorted_preprocessors().keys())
def get_all_preprocessor_tags():
tags = []
for k, p in supported_preprocessors.items():
tags += p.tags
tags = list(set(tags))
tags = sorted(tags)
return ['All'] + tags
def get_filtered_preprocessors(tag):
if tag == 'All':
return supported_preprocessors
return {k: v for k, v in get_sorted_preprocessors().items() if tag in v.tags or k == 'None'}
def get_filtered_preprocessor_names(tag):
return list(get_filtered_preprocessors(tag).keys())
def get_filtered_controlnet_names(tag):
filtered_preprocessors = get_filtered_preprocessors(tag)
model_filename_filters = []
for p in filtered_preprocessors.values():
model_filename_filters += p.model_filename_filters
return [
x for x in controlnet_names
if x == 'None' or (
any(f.lower() in x.lower() for f in model_filename_filters) and
get_sd_version().is_compatible_with(StableDiffusionVersion.detect_from_model_name(x))
)
]
def update_controlnet_filenames():
global controlnet_filename_dict, controlnet_names
controlnet_filename_dict = {'None': 'model.safetensors'}
controlnet_names = ['None']
ext_dirs = (shared.opts.data.get("control_net_models_path", None), getattr(shared.cmd_opts, 'controlnet_dir', None))
extra_lora_paths = (extra_lora_path for extra_lora_path in ext_dirs
if extra_lora_path is not None and os.path.exists(extra_lora_path))
paths = [controlnet_dir, *extra_lora_paths]
for path in paths:
sort_by = shared.opts.data.get("control_net_models_sort_models_by", "name")
filter_by = shared.opts.data.get("control_net_models_name_filter", "")
found = get_all_models(sort_by, filter_by, path)
controlnet_filename_dict.update(found)
controlnet_names = list(controlnet_filename_dict.keys())
return
def get_sd_version() -> StableDiffusionVersion:
if not shared.sd_model:
return StableDiffusionVersion.UNKNOWN
if shared.sd_model.is_sdxl:
return StableDiffusionVersion.SDXL
elif shared.sd_model.is_sd2:
return StableDiffusionVersion.SD2x
elif shared.sd_model.is_sd1:
return StableDiffusionVersion.SD1x
else:
return StableDiffusionVersion.UNKNOWN
def select_control_type(
control_type: str,
sd_version: StableDiffusionVersion = StableDiffusionVersion.UNKNOWN,
) -> Tuple[List[str], List[str], str, str]:
global controlnet_names
pattern = control_type.lower()
all_models = list(controlnet_names)
if pattern == "all":
preprocessors = get_sorted_preprocessors().values()
return [
[p.name for p in preprocessors],
all_models,
'none', # default option
"None" # default model
]
filtered_model_list = get_filtered_controlnet_names(control_type)
if pattern == "none":
filtered_model_list.append("None")
assert len(filtered_model_list) > 0, "'None' model should always be available."
if len(filtered_model_list) == 1:
default_model = "None"
else:
default_model = filtered_model_list[1]
for x in filtered_model_list:
if "11" in x.split("[")[0]:
default_model = x
break
return (
get_filtered_preprocessor_names(control_type),
filtered_model_list,
get_default_preprocessor(control_type),
default_model
)
|