File size: 42,474 Bytes
ecc4278 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 |
from diffusers.utils import check_min_version
check_min_version("0.28.1")
class CascadeMemory:
ModuleReload = False
noUnload = False
teCLIP = None
lastPrior = None
lastDecoder = None
lastTextEncoder = None
prior = None
decoder = None
lastSeed = -1
galleryIndex = 0
torchMessage = True # display information message about torch/bfloat16, set to False after first check
locked = False # for preventing changes to the following volatile state while generating
karras = False
force_f16 = False
embedsState = 0
import gc
import gradio
import numpy
from PIL import Image
import torch
try:
from importlib import reload
CascadeMemory.ModuleReload = True
except:
CascadeMemory.ModuleReload = False
from modules import script_callbacks, images, shared
from modules.processing import get_fixed_seed
from modules.shared import opts
from modules.ui_components import ResizeHandleRow
import modules.infotext_utils as parameters_copypaste
from transformers import T5TokenizerFast, T5ForConditionalGeneration
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import StableCascadeUNet, DDPMWuerstchenScheduler
from diffusers import DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, LCMScheduler, SASolverScheduler
from diffusers.pipelines.wuerstchen.modeling_paella_vq_model import PaellaVQModel
from diffusers import AutoencoderKL
from diffusers.utils import logging
import customStylesListSC as styles
import modelsListSC as models
import scripts.SC_pipeline as pipeline
# modules/processing.py
def create_infotext(priorModel, decoderModel, vaeModel, positive_prompt, negative_prompt, clipskip, guidance_scale, prior_steps, decoder_steps, seed, schedulerP, schedulerD, width, height, ):
karras = " : Karras" if CascadeMemory.karras == True else ""
generation_params = {
"Size" : f"{width}x{height}",
"Seed" : seed,
"Scheduler(Prior/Decoder)" : f"{schedulerP}/{schedulerD}{karras}",
"Steps(Prior/Decoder)" : f"{prior_steps}/{decoder_steps}",
"CFG" : guidance_scale,
"CLIP skip" : clipskip,
}
model_text = "(" + priorModel.split('.')[0] + "/" + decoderModel.split('.')[0] + "/" + vaeModel + ")"
prompt_text = f"Prompt: {positive_prompt}"
if negative_prompt != "":
prompt_text += (f"\nNegative: {negative_prompt}")
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
return f"Model: StableCascade {model_text}\n{prompt_text}\n{generation_params_text}"
def predict(priorModel, decoderModel, vaeModel, positive_prompt, negative_prompt, clipskip, width, height, guidance_scale,
prior_steps, decoder_steps, seed, num_images, PriorScheduler, DecoderScheduler, style, i2iSource1, i2iSource2):
#resolution, latentScale):
logging.set_verbosity(logging.ERROR)
torch.set_grad_enabled(False)
if style != 0:
positive_prompt = styles.styles_list[style][1].replace("{prompt}", positive_prompt)
negative_prompt = negative_prompt + styles.styles_list[style][2]
gc.collect()
torch.cuda.empty_cache()
fixed_seed = get_fixed_seed(seed)
CascadeMemory.lastSeed = fixed_seed
useLitePrior = "lite" in priorModel
useLiteDecoder = "lite" in decoderModel
if CascadeMemory.force_f16 == True:
dtype = torch.float16
elif torch.cuda.is_bf16_supported() == True and int(torch.__version__[0]) >= 2 and int(torch.__version__[2]) >= 2:
dtype = torch.bfloat16
else:
if CascadeMemory.torchMessage == True:
if torch.cuda.is_bf16_supported() == True:
print ("INFO: StableCascade: Using float16. Hardware supports bfloat16, but needs Torch version >= 2.2.0 (using " + torch.__version__ + ").")
else:
print ("INFO: StableCascade: Using float16. Hardware does not support bfloat16.")
CascadeMemory.torchMessage = False
dtype = torch.float16
#### image embeds, basically using images to prompt - not image to image
image_embeds0 = torch.zeros(
num_images,
1,
768,
device='cpu',
dtype=torch.float32,
)
image_embeds0 = image_embeds0.to('cuda').to(dtype)
if i2iSource1 or i2iSource2:
prior = pipeline.StableCascadePriorPipeline_DoE.from_pretrained(
"stabilityai/stable-cascade-prior",
local_files_only=False, cache_dir=".//models//diffusers//",
prior=None,
text_encoder=None,
tokenizer=None,
scheduler=None,
variant="bf16",
torch_dtype=torch.float32)
if i2iSource1:
image_embeds1, _ = prior.encode_image(images=[i2iSource1], device='cpu', dtype=torch.float32, batch_size=1, num_images_per_prompt=1)
image_embeds1 = image_embeds1.to('cuda').to(dtype)
del i2iSource1
else:
image_embeds1 = image_embeds0
if i2iSource2:
image_embeds2, _ = prior.encode_image(images=[i2iSource2], device='cpu', dtype=torch.float32, batch_size=1, num_images_per_prompt=1)
image_embeds2 = image_embeds2.to('cuda').to(dtype)
else:
image_embeds2 = image_embeds0
del prior
match CascadeMemory.embedsState:
case 3: # 0b11: both negative
positive_image_embeds = torch.cat((image_embeds0, image_embeds0), dim=1)
negative_image_embeds = torch.cat((image_embeds1, image_embeds2), dim=1)
case 2: # 0b10: 1 negative, 2 positive
positive_image_embeds = image_embeds2
negative_image_embeds = image_embeds1
case 1: # 0b01, 1 positive, 2 negative
positive_image_embeds = image_embeds1
negative_image_embeds = image_embeds2
case 0: # 0b00, both positive
positive_image_embeds = torch.cat((image_embeds1, image_embeds2), dim=1)
negative_image_embeds = torch.cat((image_embeds0, image_embeds0), dim=1)
del image_embeds1, image_embeds2
else:
positive_image_embeds = image_embeds0
negative_image_embeds = image_embeds0
del image_embeds0
#### note: image_embeds are repeated for num_images in pipeline
#### end image embeds
#### text encoder
source = priorModel if (priorModel in models.models_list_prior) else "stabilityai/stable-cascade-prior"
tokenizer = CLIPTokenizer.from_pretrained(
source,
subfolder='tokenizer',
local_files_only=False, cache_dir=".//models//diffusers//",
torch_dtype=dtype)
# def prompt_and_weights (tokenizer, prompt):
# promptSplit = prompt.split('|')
# newPrompt = []
# weights = []
# max_length = tokenizer.model_max_length
# for s in promptSplit:
# subpromptSplit = s.strip().split(' ')
# cleanedPrompt = ' '.join((t.split(':')[0] for t in subpromptSplit))
# newPrompt.append(cleanedPrompt)
# subWeights = [1.0]
# for t in subpromptSplit:
# t = t.split(':')
# if len(t) == 1:
# weight = 1.0
# elif t[1] == '':
# weight = 1.0
# else:
# try:
# weight = float(t[1].rstrip(','))
# except:
# weight = 1.0
# text_inputs = tokenizer(
# t[0],
# padding=False,
# max_length=max_length,
# truncation=True,
# return_attention_mask=False,
# add_special_tokens=False,
# return_tensors="pt",
# )
# tokenLength = len(text_inputs.input_ids[0])
# for w in range(tokenLength):
# subWeights.append(weight)
# weights.append(subWeights)
# return newPrompt, weights
# fixed_positive_prompt, positive_weights = prompt_and_weights(tokenizer, positive_prompt)
# fixed_negative_prompt, negative_weights = prompt_and_weights(tokenizer, negative_prompt)
# while len(fixed_positive_prompt) < len(fixed_negative_prompt):
# fixed_positive_prompt.append('')
# positive_weights.append([1.0])
# while len(fixed_positive_prompt) > len(fixed_negative_prompt):
# fixed_negative_prompt.append('')
# negative_weights.append([1.0])
# text_inputs = tokenizer(
# fixed_positive_prompt + fixed_negative_prompt,
# padding=True,
# max_length=tokenizer.model_max_length,
# truncation=True,
# return_attention_mask=True,
# return_tensors="pt",
# )
# positive_input_ids = text_inputs.input_ids[0:len(fixed_positive_prompt)]
# negative_input_ids = text_inputs.input_ids[len(fixed_positive_prompt):]
# positive_attention = text_inputs.attention_mask[0:len(fixed_positive_prompt)]
# negative_attention = text_inputs.attention_mask[len(fixed_positive_prompt):]
text_inputs = tokenizer(
[positive_prompt] + [negative_prompt],
padding=True,
max_length=tokenizer.model_max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
positive_input_ids = text_inputs.input_ids[0:1]
negative_input_ids = text_inputs.input_ids[1:]
positive_attention = text_inputs.attention_mask[0:1]
negative_attention = text_inputs.attention_mask[1:]
del text_inputs
del tokenizer
if CascadeMemory.teCLIP == None or source != CascadeMemory.lastTextEncoder:
try:
CascadeMemory.teCLIP = CLIPTextModelWithProjection.from_pretrained(
source,
subfolder='text_encoder',
local_files_only=False, cache_dir=".//models//diffusers//",
variant='bf16',
torch_dtype=dtype)
except:
try:
CascadeMemory.teCLIP = CLIPTextModelWithProjection.from_pretrained(
source,
subfolder='text_encoder',
local_files_only=False, cache_dir=".//models//diffusers//",
torch_dtype=dtype)
except:
CascadeMemory.teCLIP = CLIPTextModelWithProjection.from_pretrained(
"stabilityai/stable-cascade-prior",
subfolder='text_encoder',
local_files_only=False, cache_dir=".//models//diffusers//",
variant='bf16',
torch_dtype=dtype)
CascadeMemory.lastTextEncoder = source
CascadeMemory.teCLIP.cuda()
text_encoder_output = CascadeMemory.teCLIP(
positive_input_ids.to('cuda'), attention_mask=positive_attention.to('cuda'), output_hidden_states=True
)
positive_embeds = text_encoder_output.hidden_states[-(clipskip+1)]
positive_pooled = text_encoder_output.text_embeds.unsqueeze(1)
# positive_mean_before = positive_embeds.mean()
# for l in range(len(positive_embeds)):
# for p in range(min(77, len(positive_weights[l]))):
# positive_embeds[l][p] *= positive_weights[l][p]
# positive_mean_after = positive_embeds.mean()
# positive_embeds *= positive_mean_before / positive_mean_after
positive_embeds = positive_embeds.view(1, -1, 1280)
positive_pooled = positive_pooled[0].unsqueeze(0)
positive_embeds = positive_embeds.to(dtype=dtype, device='cuda')
positive_pooled = positive_pooled.to(dtype=dtype, device='cuda')
positive_embeds = positive_embeds.repeat_interleave(num_images, dim=0)
positive_pooled = positive_pooled.repeat_interleave(num_images, dim=0)
if guidance_scale > 1.0:
text_encoder_output = CascadeMemory.teCLIP(
negative_input_ids.to('cuda'), attention_mask=negative_attention.to('cuda'), output_hidden_states=True
)
negative_embeds = text_encoder_output.hidden_states[-1]
negative_pooled = text_encoder_output.text_embeds.unsqueeze(1)
# negative_mean_before = negative_embeds.mean()
# for l in range(len(negative_embeds)):
# for p in range(min(77, len(negative_weights[l]))):
# negative_embeds[l][p] *= negative_weights[l][p]
# negative_mean_after = negative_embeds.mean()
# negative_embeds *= negative_mean_before / negative_mean_after
negative_embeds = negative_embeds.view(1, -1, 1280)
negative_pooled = negative_pooled[0].unsqueeze(0)
negative_embeds = negative_embeds.to(dtype=dtype, device='cuda')
negative_pooled = negative_pooled.to(dtype=dtype, device='cuda')
negative_embeds = negative_embeds.repeat_interleave(num_images, dim=0)
negative_pooled = negative_pooled.repeat_interleave(num_images, dim=0)
else:
negative_embeds = None
negative_pooled = None
del positive_input_ids, negative_input_ids, positive_attention, negative_attention
if CascadeMemory.noUnload:
pass#CascadeMemory.teCLIP.cpu() # try keeping on GPU to free memory to store full unet
else:
CascadeMemory.teCLIP = None
#### end text_encoder
#### setup prior pipeline
if CascadeMemory.prior == None:
CascadeMemory.prior = pipeline.StableCascadePriorPipeline_DoE.from_pretrained(
"stabilityai/stable-cascade-prior",
local_files_only=False, cache_dir=".//models//diffusers//",
image_encoder=None, feature_extractor=None, tokenizer=None, text_encoder=None,
prior=None,
variant='bf16',
torch_dtype=dtype,)
#### end setup prior pipeline
#### get prior unet
if not CascadeMemory.noUnload or priorModel != CascadeMemory.lastPrior:
print ("StableCascade: loading prior unet ...", end="\r", flush=True)
if priorModel in models.models_list_prior:
# custom diffusers type
CascadeMemory.prior.prior = StableCascadeUNet.from_pretrained(
priorModel,
subfolder="prior_lite" if "lite" in priorModel else "prior",
local_files_only=False, cache_dir=".//models//diffusers//",
use_low_cpu_mem=True,
torch_dtype=dtype)
elif priorModel == "lite":
CascadeMemory.prior.prior = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior",
local_files_only=False, cache_dir=".//models//diffusers//",
subfolder="prior_lite",
variant="bf16",
use_low_cpu_mem=True,
torch_dtype=dtype)
elif priorModel == "full":
CascadeMemory.prior.prior = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior",
local_files_only=False, cache_dir=".//models//diffusers//",
subfolder="prior",
variant="bf16",
use_low_cpu_mem=True,
torch_dtype=dtype)
else:# ".safetensors" in priorModel:
customStageC = ".//models//diffusers//StableCascadeCustom//StageC//" + priorModel
CascadeMemory.prior.prior = StableCascadeUNet.from_single_file(
customStageC,
local_files_only=True, cache_dir=".//models//diffusers//",
use_safetensors=True,
subfolder="prior_lite" if "lite" in priorModel else "prior",
use_low_cpu_mem=True,
torch_dtype=dtype,
config="stabilityai/stable-cascade-prior")
CascadeMemory.prior.prior.to(memory_format=torch.channels_last)
CascadeMemory.lastPrior = priorModel if CascadeMemory.noUnload else None
#### end get prior unet
if useLitePrior == False:
CascadeMemory.prior.enable_sequential_cpu_offload() # good for full models on 8GB, but unnecessary for lite (and slows down generation)
else:
CascadeMemory.prior.to('cuda')
generator = [torch.Generator(device="cpu").manual_seed(fixed_seed+i) for i in range(num_images)]
schedulerConfig = dict(CascadeMemory.prior.scheduler.config)
schedulerConfig['use_karras_sigmas'] = CascadeMemory.karras
schedulerConfig['clip_sample'] = False
schedulerConfig.pop('algorithm_type', None)
if PriorScheduler == 'DPM++ 2M':
CascadeMemory.prior.scheduler = DPMSolverMultistepScheduler.from_config(schedulerConfig)
elif PriorScheduler == "DPM++ 2M SDE":
schedulerConfig['algorithm_type'] = 'sde-dpmsolver++'
CascadeMemory.prior.scheduler = DPMSolverMultistepScheduler.from_config(schedulerConfig)
elif PriorScheduler == "LCM":
CascadeMemory.prior.scheduler = LCMScheduler.from_config(schedulerConfig)
elif PriorScheduler == "SA-solver":
schedulerConfig['algorithm_type'] = 'data_prediction'
CascadeMemory.prior.scheduler = SASolverScheduler.from_config(schedulerConfig)
else:
CascadeMemory.prior.scheduler = DDPMWuerstchenScheduler.from_config(schedulerConfig)
with torch.inference_mode():
prior_output = CascadeMemory.prior(
prompt_embeds = positive_embeds,
prompt_embeds_pooled = positive_pooled,
negative_prompt_embeds = negative_embeds,
negative_prompt_embeds_pooled = negative_pooled,
image_embeds=positive_image_embeds,
negative_image_embeds=negative_image_embeds,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=prior_steps,
num_images_per_prompt=num_images,
generator=generator,
)
del generator
if not CascadeMemory.noUnload:
CascadeMemory.prior.prior= None
CascadeMemory.lastPrior = None
positive_embeds = prior_output.get("prompt_embeds", None)
positive_pooled = prior_output.get("prompt_embeds_pooled", None)
negative_embeds = prior_output.get("negative_prompt_embeds", None)
negative_pooled = prior_output.get("negative_prompt_embeds_pooled", None)
#i: (num output images, num input images, 768)
#e: (num output images, 77, 1280)
#p: (num output images, 1, 1280)
gc.collect()
torch.cuda.empty_cache()
#### setup decoder pipeline
if CascadeMemory.decoder == None:
CascadeMemory.decoder = pipeline.StableCascadeDecoderPipeline_DoE.from_pretrained(
"stabilityai/stable-cascade",
local_files_only=False, cache_dir=".//models//diffusers//",
decoder=None,
vqgan=None,
variant='bf16',
torch_dtype=dtype,)
#### end setup decoder pipeline
#### get decoder unet
if not CascadeMemory.noUnload or decoderModel != CascadeMemory.lastDecoder:
print ("StableCascade: loading decoder unet ...", end="\r", flush=True)
if decoderModel in models.models_list_decoder:
# custom diffusers type
CascadeMemory.decoder.decoder = StableCascadeUNet.from_pretrained(
decoderModel,
subfolder="decoder_lite" if "lite" in decoderModel else "decoder",
local_files_only=False, cache_dir=".//models//diffusers//",
use_low_cpu_mem=True,
torch_dtype=dtype)
elif decoderModel == "lite":
CascadeMemory.decoder.decoder = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade",
local_files_only=False, cache_dir=".//models//diffusers//",
subfolder="decoder_lite",
variant="bf16",
use_low_cpu_mem=True,
torch_dtype=dtype)
elif decoderModel == "full":
CascadeMemory.decoder.decoder = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade",
local_files_only=False, cache_dir=".//models//diffusers//",
subfolder="decoder",
variant="bf16",
use_low_cpu_mem=True,
torch_dtype=dtype)
else:# ".safetensors" in decoderModel:
customStageC = ".//models//diffusers//StableCascadeCustom//StageC//" + decoderModel
CascadeMemory.decoder.decoder = StableCascadeUNet.from_single_file(
customStageC,
local_files_only=True, cache_dir=".//models//diffusers//",
use_safetensors=True,
subfolder="decoder_lite" if "lite" in decoderModel else "decoder",
use_low_cpu_mem=True,
torch_dtype=dtype,
config="stabilityai/stable-cascade")
CascadeMemory.decoder.decoder.to(memory_format=torch.channels_last)
CascadeMemory.lastDecoder = decoderModel if CascadeMemory.noUnload else None
#### end get decoder unet
#### VAE always loaded - it's only 35MB
if vaeModel == 'madebyollin':
# Load the Stage-A-ft-HQ model
CascadeMemory.decoder.vqgan = PaellaVQModel.from_pretrained("madebyollin/stage-a-ft-hq",
local_files_only=False, cache_dir=".//models//diffusers//", torch_dtype=dtype)
else:
#default
CascadeMemory.decoder.vqgan = PaellaVQModel.from_pretrained("stabilityai/stable-cascade",
local_files_only=False, cache_dir=".//models//diffusers//", subfolder="vqgan", torch_dtype=dtype)
CascadeMemory.decoder.enable_model_cpu_offload()
## regenerate the Generator, needed for deterministic outputs - reusing from earlier doesn't work
#still not correct with custom checkpoint?
generator = [torch.Generator(device="cpu").manual_seed(fixed_seed+i) for i in range(num_images)]
# trying to colour the noise here is 100% ineffective
schedulerConfig = dict(CascadeMemory.decoder.scheduler.config)
schedulerConfig['use_karras_sigmas'] = CascadeMemory.karras
schedulerConfig['clip_sample'] = False
schedulerConfig.pop('algorithm_type', None)
if DecoderScheduler == 'DPM++ 2M':
CascadeMemory.decoder.scheduler = DPMSolverMultistepScheduler.from_config(schedulerConfig)
elif DecoderScheduler == "DPM++ 2M SDE":
schedulerConfig['algorithm_type'] = 'sde-dpmsolver++'
CascadeMemory.decoder.scheduler = DPMSolverMultistepScheduler.from_config(schedulerConfig)
elif DecoderScheduler == "LCM":
CascadeMemory.decoder.scheduler = LCMScheduler.from_config(schedulerConfig)
elif DecoderScheduler == "SA-solver":
schedulerConfig['algorithm_type'] = 'data_prediction'
CascadeMemory.decoder.scheduler = SASolverScheduler.from_config(schedulerConfig)
else:
CascadeMemory.decoder.scheduler = DDPMWuerstchenScheduler.from_config(schedulerConfig)
with torch.inference_mode():
decoder_output = CascadeMemory.decoder(
image_embeddings=prior_output.image_embeddings.to(dtype),
prompt_embeds = positive_embeds,
prompt_embeds_pooled = positive_pooled,
negative_prompt_embeds = negative_embeds,
negative_prompt_embeds_pooled = negative_pooled,
prompt=None,
negative_prompt=None,
guidance_scale=1,
output_type="pil",
num_inference_steps=decoder_steps,
generator=generator,
).images
del prior_output, positive_embeds, positive_pooled, negative_embeds, negative_pooled
del generator
if not CascadeMemory.noUnload:
CascadeMemory.decoder.decoder = None
CascadeMemory.decoder.vqgan = None
CascadeMemory.lastDecoder = None
gc.collect()
torch.cuda.empty_cache()
result = []
for image in decoder_output:
info=create_infotext(priorModel, decoderModel, vaeModel, positive_prompt, negative_prompt, clipskip, guidance_scale, prior_steps, decoder_steps, fixed_seed,
PriorScheduler, DecoderScheduler, width, height)
result.append((image, info))
images.save_image(
image,
opts.outdir_samples or opts.outdir_txt2img_samples,
"",
fixed_seed,
positive_prompt,
opts.samples_format,
info
)
fixed_seed += 1
gc.collect()
torch.cuda.empty_cache()
CascadeMemory.locked = False
return gradio.Button.update(value='Generate', variant='primary', interactive=True), gradio.Button.update(interactive=True), result
def on_ui_tabs():
if CascadeMemory.ModuleReload:
reload (pipeline)
reload (models)
reload (styles)
from modules.ui_components import ToolButton
def buildModelsLists ():
prior = ["lite", "full"] + models.models_list_prior
decoder = ["lite", "full"] + models.models_list_decoder
import glob
customStageC = glob.glob(".\models\diffusers\StableCascadeCustom\StageC\*.safetensors")
customStageB = glob.glob(".\models\diffusers\StableCascadeCustom\StageB\*.safetensors")
for i in customStageC:
prior.append(i.split('\\')[-1])
for i in customStageB:
decoder.append(i.split('\\')[-1])
return prior, decoder
models_list_P, models_list_D = buildModelsLists ()
def refreshModels ():
prior, decoder = buildModelsLists ()
return gradio.Dropdown.update(choices=prior), gradio.Dropdown.update(choices=decoder)
def getGalleryIndex (evt: gradio.SelectData):
CascadeMemory.galleryIndex = evt.index
def reuseLastSeed ():
return CascadeMemory.lastSeed + CascadeMemory.galleryIndex
def randomSeed ():
return -1
def i2iImageFromGallery (gallery):
try:
newImage = gallery[CascadeMemory.galleryIndex][0]['name'].split('?')
return newImage[0]
except:
return None
def i2iSwap (i1, i2):
return i2, i1
def toggleNU ():
if not CascadeMemory.locked:
CascadeMemory.noUnload ^= True
return gradio.Button.update(variant=['secondary', 'primary'][CascadeMemory.noUnload])
def unloadM ():
if not CascadeMemory.locked:
CascadeMemory.teCLIP = None
CascadeMemory.prior = None
CascadeMemory.decoder = None
CascadeMemory.lastPrior = None
CascadeMemory.lastDecoder = None
CascadeMemory.lastTextEncoder = None
gc.collect()
torch.cuda.empty_cache()
else:
gradio.Info('Unable to unload models while using them.')
def clearE ():
if CascadeMemory.locked:
CascadeMemory.locked = False
return gradio.Button.update(value='Generate', variant='primary', interactive=True)
def toggleSP ():
if not CascadeMemory.locked:
return gradio.Button.update(variant='primary')
def superPrompt (prompt, seed):
tokenizer = getattr (shared, 'SuperPrompt_tokenizer', None)
superprompt = getattr (shared, 'SuperPrompt_model', None)
if tokenizer is None:
tokenizer = T5TokenizerFast.from_pretrained(
'roborovski/superprompt-v1',
cache_dir='.//models//diffusers//',
)
shared.SuperPrompt_tokenizer = tokenizer
if superprompt is None:
superprompt = T5ForConditionalGeneration.from_pretrained(
'roborovski/superprompt-v1',
cache_dir='.//models//diffusers//',
device_map='auto',
torch_dtype=torch.float16
)
shared.SuperPrompt_model = superprompt
print("SuperPrompt-v1 model loaded successfully.")
if torch.cuda.is_available():
superprompt.to('cuda')
torch.manual_seed(get_fixed_seed(seed))
device = superprompt.device
systemprompt1 = "Expand the following prompt to add more detail: "
input_ids = tokenizer(systemprompt1 + prompt, return_tensors="pt").input_ids.to(device)
outputs = superprompt.generate(input_ids, max_new_tokens=77, repetition_penalty=1.2, do_sample=True)
dirty_text = tokenizer.decode(outputs[0])
result = dirty_text.replace("<pad>", "").replace("</s>", "").strip()
return gradio.Button.update(variant='secondary'), result
def toggleKarras ():
if not CascadeMemory.locked:
CascadeMemory.karras ^= True
return gradio.Button.update(variant='primary' if CascadeMemory.karras == True else 'secondary',
value='\U0001D40A' if CascadeMemory.karras == True else '\U0001D542')
def toggleF16 ():
if not CascadeMemory.locked:
CascadeMemory.force_f16 ^= True
return gradio.Button.update(variant='primary' if CascadeMemory.force_f16 == True else 'secondary')
def toggleE1 ():
if not CascadeMemory.locked:
CascadeMemory.embedsState ^= 2
return gradio.Button.update(variant='primary' if (CascadeMemory.embedsState & 2) else 'secondary')
def toggleE2 ():
if not CascadeMemory.locked:
CascadeMemory.embedsState ^= 1
return gradio.Button.update(variant='primary' if (CascadeMemory.embedsState & 1) else 'secondary')
def toggleGenerate ():
CascadeMemory.locked = True
return gradio.Button.update(value='...', variant='secondary', interactive=False), gradio.Button.update(interactive=False)
schedulerList = ["default", "DPM++ 2M", "DPM++ 2M SDE", "LCM", "SA-solver", ]
def parsePrompt (positive, negative, clipskip, width, height, seed, schedulerP, schedulerD, stepsP, stepsD, cfg):
p = positive.split('\n')
lineCount = len(p)
negative = ''
if "Prompt" != p[0] and "Prompt: " != p[0][0:8]: # civitAI style special case
positive = p[0]
l = 1
while (l < lineCount) and not (p[l][0:17] == "Negative prompt: " or p[l][0:7] == "Steps: " or p[l][0:6] == "Size: "):
if p[l] != '':
positive += '\n' + p[l]
l += 1
for l in range(lineCount):
if "Prompt" == p[l][0:6]:
if ": " == p[l][6:8]: # mine
positive = str(p[l][8:])
c = 1
elif "Prompt" == p[l] and (l+1 < lineCount): # webUI
positive = p[l+1]
c = 2
else:
continue
while (l+c < lineCount) and not (p[l+c][0:10] == "Negative: " or p[l+c][0:15] == "Negative Prompt" or p[l+c] == "Params" or p[l+c][0:7] == "Steps: " or p[l+c][0:6] == "Size "):
if p[l+c] != '':
positive += '\n' + p[l+c]
c += 1
l += 1
elif "Negative" == p[l][0:8]:
if ": " == p[l][8:10]: # mine
negative = str(p[l][10:])
c = 1
elif " prompt: " == p[l][8:17]: # civitAI
negative = str(p[l][17:])
c = 1
elif " Prompt" == p[l][8:15] and (l+1 < lineCount): # webUI
negative = p[l+1]
c = 2
else:
continue
while (l+c < lineCount) and not (p[l+c] == "Params" or p[l+c][0:7] == "Steps: " or p[l+c][0:6] == "Size: "):
if p[l+c] != '':
negative += '\n' + p[l+c]
c += 1
l += 1
else:
params = p[l].split(',')
for k in range(len(params)):
pairs = params[k].strip().split(' ')
match pairs[0]:
case "Size:":
size = pairs[1].split('x')
width = 128 * ((int(size[0]) + 64) // 128)
height = 128 * ((int(size[1]) + 64) // 128)
case "Seed:":
seed = int(pairs[1])
case "Sampler:":
sched = ' '.join(pairs[1:])
if sched in schedulerList:
scheduler = sched
case "Scheduler(Prior/Decoder):":
sched = ' '.join(pairs[1:])
sched = sched.split('/')
if sched[0] in schedulerList:
schedulerP = sched[0]
if sched[1] in schedulerList:
schedulerD = sched[1]
case "Scheduler:":
sched = ' '.join(pairs[1:])
if sched in schedulerList:
schedulerP = sched
case "Steps(Prior/Decoder):":
steps = str(pairs[1]).split('/')
stepsP = int(steps[0])
stepsD = int(steps[1])
case "Steps:":
stepsP = int(pairs[1])
case "CFG":
if "scale:" == pairs[1]:
cfg = float(pairs[2])
case "CFG:":
cfg = float(pairs[1])
case "width:":
width = 128 * ((int(pairs[1]) + 64) // 128)
case "height:":
height = 128 * ((int(pairs[1]) + 64) // 128)
case "CLIP skip:":
clipskip = int(pairs[1])
return positive, negative, clipskip, width, height, seed, schedulerP, schedulerD, stepsP, stepsD, cfg
with gradio.Blocks() as stable_cascade_block:
with ResizeHandleRow():
with gradio.Column():
with gradio.Row():
refresh = ToolButton(value='\U0001f504')
modelP = gradio.Dropdown(models_list_P, label='Stage C (Prior)', value="lite", type='value', scale=2)
modelD = gradio.Dropdown(models_list_D, label='Stage B (Decoder)', value="lite", type='value', scale=2)
modelV = gradio.Dropdown(['default', 'madebyollin'], label='Stage A (VAE)', value='default', type='value', scale=0)
clipskip = gradio.Number(label='CLIP skip', minimum=0, maximum=2, step=1, value=0, precision=0, scale=1)
with gradio.Row():
parse = ToolButton(value="↙️", variant='secondary', tooltip="parse")
SP = ToolButton(value='ꌗ', variant='secondary', tooltip='zero out negative embeds')
karras = ToolButton(value="\U0001D542", variant='secondary', tooltip="use Karras sigmas")
schedulerP = gradio.Dropdown(schedulerList, label='Sampler (Prior)', value="default", type='value', scale=1)
schedulerD = gradio.Dropdown(schedulerList, label='Sampler (Decoder)', value="default", type='value', scale=1)
style = gradio.Dropdown([x[0] for x in styles.styles_list], label='Style', value="(None)", type='index', scale=1)
f16 = ToolButton(value="f16", variant='secondary', tooltip="force float16")
with gradio.Row():
prompt = gradio.Textbox(label='Prompt', placeholder='Enter a prompt here...', default='', lines=2)
with gradio.Row():
negative_prompt = gradio.Textbox(label='Negative', placeholder='', lines=1.0)
with gradio.Row():
width = gradio.Slider(label='Width', minimum=128, maximum=4096, step=128, value=1024, elem_id="StableCascade_width")
swapper = ToolButton(value="\U000021C4")
height = gradio.Slider(label='Height', minimum=128, maximum=4096, step=128, value=1024, elem_id="StableCascade_height")
with gradio.Row():
prior_steps = gradio.Slider(label='Steps (Prior)', minimum=1, maximum=60, step=1, value=20)
decoder_steps = gradio.Slider(label='Steps (Decoder)', minimum=1, maximum=40, step=1, value=10)
with gradio.Row():
guidance_scale = gradio.Slider(label='CFG', minimum=1, maximum=16, step=0.1, value=4.0)
sampling_seed = gradio.Number(label='Seed', value=-1, precision=0, scale=0)
random = ToolButton(value="\U0001f3b2\ufe0f")
reuseSeed = ToolButton(value="\u267b\ufe0f")
batch_size = gradio.Number(label='Batch Size', minimum=1, maximum=9, value=1, precision=0, scale=0)
# with gradio.Row():
# resolution = gradio.Slider(label='Resolution multiple (prior)', minimum=32, maximum=64, step=0.01, value=42.67)
# latentScale = gradio.Slider(label='Latent scale (VAE)', minimum=6, maximum=16, step=0.01, value=10.67)
with gradio.Accordion(label='Image prompt', open=False):
#add start/end? would need to modify pipeline
with gradio.Row():
i2iSource1 = gradio.Image(label='image source', sources=['upload'], type='pil', interactive=True, show_download_button=False)
i2iSource2 = gradio.Image(sources=['upload'], type='pil', interactive=True, show_download_button=False)
with gradio.Row():
embed1State = ToolButton('Neg', variant='secondary')
i2iFromGallery1 = gradio.Button(value='Get image (1) from gallery', scale=6)
i2iFromGallery2 = gradio.Button(value='Get image (2) from gallery', scale=6)
embed2State = ToolButton('Neg', variant='secondary')
with gradio.Row():
swapImages = gradio.Button(value='Swap images')
with gradio.Row():
noUnload = gradio.Button(value='keep models loaded', variant='primary' if CascadeMemory.noUnload else 'secondary', tooltip='noUnload', scale=1)
unloadModels = gradio.Button(value='unload models', tooltip='force unload of models', scale=1)
# clearError = gradio.Button(value='remove Error', tooltip='clear Error', scale=1)
ctrls = [modelP, modelD, modelV, prompt, negative_prompt, clipskip, width, height, guidance_scale, prior_steps, decoder_steps,
sampling_seed, batch_size, schedulerP, schedulerD, style, i2iSource1, i2iSource2]#, resolution, latentScale]
with gradio.Column():
generate_button = gradio.Button(value="Generate", variant='primary')
output_gallery = gradio.Gallery(label='Output', height="75vh", show_label=False,
object_fit='contain', visible=True, columns=1, preview=True)
with gradio.Row():
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
for tabname, button in buttons.items():
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=button, tabname=tabname, source_text_component=prompt, source_image_component=output_gallery,
))
noUnload.click(toggleNU, inputs=[], outputs=noUnload)
unloadModels.click(unloadM, inputs=[], outputs=[], show_progress=True)
# clearError.click(clearE, inputs=[], outputs=[generate_button])
SP.click(toggleSP, inputs=[], outputs=SP)
SP.click(superPrompt, inputs=[prompt, sampling_seed], outputs=[SP, prompt])
parse.click(parsePrompt, inputs=[prompt, negative_prompt, clipskip, width, height, sampling_seed, schedulerP, schedulerD, prior_steps, decoder_steps, guidance_scale], outputs=[prompt, negative_prompt, clipskip, width, height, sampling_seed, schedulerP, schedulerD, prior_steps, decoder_steps, guidance_scale], show_progress=False)
refresh.click(refreshModels, inputs=[], outputs=[modelP, modelD])
karras.click(toggleKarras, inputs=[], outputs=karras)
f16.click(toggleF16, inputs=[], outputs=f16)
swapper.click(fn=None, _js="function(){switchWidthHeight('StableCascade')}", inputs=None, outputs=None, show_progress=False)
random.click(randomSeed, inputs=[], outputs=sampling_seed, show_progress=False)
reuseSeed.click(reuseLastSeed, inputs=[], outputs=sampling_seed, show_progress=False)
i2iFromGallery1.click (fn=i2iImageFromGallery, inputs=[output_gallery], outputs=[i2iSource1])
i2iFromGallery2.click (fn=i2iImageFromGallery, inputs=[output_gallery], outputs=[i2iSource2])
swapImages.click (fn=i2iSwap, inputs=[i2iSource1, i2iSource2], outputs=[i2iSource1, i2iSource2])
embed1State.click(fn=toggleE1, inputs=[], outputs=[embed1State], show_progress=False)
embed2State.click(fn=toggleE2, inputs=[], outputs=[embed2State], show_progress=False)
output_gallery.select (fn=getGalleryIndex, inputs=[], outputs=[])
generate_button.click(predict, inputs=ctrls, outputs=[generate_button, SP, output_gallery])
generate_button.click(toggleGenerate, inputs=[], outputs=[generate_button, SP])
return [(stable_cascade_block, "StableCascade", "stable_cascade_DoE")]
script_callbacks.on_ui_tabs(on_ui_tabs)
|