File size: 42,474 Bytes
ecc4278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
from diffusers.utils import check_min_version
check_min_version("0.28.1")


class CascadeMemory:
    ModuleReload = False
    noUnload = False
    teCLIP = None
    lastPrior = None
    lastDecoder = None
    lastTextEncoder = None
    prior = None
    decoder = None
    lastSeed = -1
    galleryIndex = 0
    torchMessage = True     #   display information message about torch/bfloat16, set to False after first check
    locked = False  #   for preventing changes to the following volatile state while generating
    karras = False
    force_f16 = False
    embedsState = 0

import gc
import gradio
import numpy
from PIL import Image
import torch
try:
    from importlib import reload
    CascadeMemory.ModuleReload = True
except:
    CascadeMemory.ModuleReload = False

from modules import script_callbacks, images, shared
from modules.processing import get_fixed_seed
from modules.shared import opts
from modules.ui_components import ResizeHandleRow
import modules.infotext_utils as parameters_copypaste

from transformers import T5TokenizerFast, T5ForConditionalGeneration
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import StableCascadeUNet, DDPMWuerstchenScheduler
from diffusers import DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, LCMScheduler, SASolverScheduler
from diffusers.pipelines.wuerstchen.modeling_paella_vq_model import PaellaVQModel
from diffusers import AutoencoderKL
from diffusers.utils import logging

import customStylesListSC as styles
import modelsListSC as models
import scripts.SC_pipeline as pipeline

# modules/processing.py
def create_infotext(priorModel, decoderModel, vaeModel, positive_prompt, negative_prompt, clipskip, guidance_scale, prior_steps, decoder_steps, seed, schedulerP, schedulerD, width, height, ):
    karras = " : Karras" if CascadeMemory.karras == True else ""
    generation_params = {
        "Size"                      : f"{width}x{height}",
        "Seed"                      : seed,
        "Scheduler(Prior/Decoder)"  : f"{schedulerP}/{schedulerD}{karras}",
        "Steps(Prior/Decoder)"      : f"{prior_steps}/{decoder_steps}",
        "CFG"                       : guidance_scale,
        "CLIP skip"                 : clipskip,
    }

    model_text = "(" + priorModel.split('.')[0] + "/" + decoderModel.split('.')[0] + "/" + vaeModel + ")"
    
    prompt_text = f"Prompt: {positive_prompt}"
    if negative_prompt != "":
        prompt_text += (f"\nNegative: {negative_prompt}")
    generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])

    return f"Model: StableCascade {model_text}\n{prompt_text}\n{generation_params_text}"


def predict(priorModel, decoderModel, vaeModel, positive_prompt, negative_prompt, clipskip,  width, height, guidance_scale,
            prior_steps, decoder_steps, seed, num_images, PriorScheduler, DecoderScheduler, style, i2iSource1, i2iSource2):
            #resolution, latentScale):
    logging.set_verbosity(logging.ERROR)

    torch.set_grad_enabled(False)

    if style != 0:
        positive_prompt = styles.styles_list[style][1].replace("{prompt}", positive_prompt)
        negative_prompt = negative_prompt + styles.styles_list[style][2]

    gc.collect()
    torch.cuda.empty_cache()

    fixed_seed = get_fixed_seed(seed)
    CascadeMemory.lastSeed = fixed_seed

    useLitePrior = "lite" in priorModel
    useLiteDecoder = "lite" in decoderModel

    if CascadeMemory.force_f16 == True:
        dtype = torch.float16
    elif torch.cuda.is_bf16_supported() == True and int(torch.__version__[0]) >= 2 and int(torch.__version__[2]) >= 2:
        dtype = torch.bfloat16
    else:
        if CascadeMemory.torchMessage == True:
            if torch.cuda.is_bf16_supported() == True:
                print ("INFO: StableCascade: Using float16. Hardware supports bfloat16, but needs Torch version >= 2.2.0 (using " + torch.__version__ + ").")
            else:
                print ("INFO: StableCascade: Using float16. Hardware does not support bfloat16.")
            CascadeMemory.torchMessage = False
        dtype = torch.float16

    ####   image embeds, basically using images to prompt - not image to image
    image_embeds0 = torch.zeros(
        num_images,
        1,
        768,
        device='cpu',
        dtype=torch.float32,
    )
    image_embeds0 = image_embeds0.to('cuda').to(dtype)
    if i2iSource1 or i2iSource2:
        prior = pipeline.StableCascadePriorPipeline_DoE.from_pretrained(
            "stabilityai/stable-cascade-prior", 
            local_files_only=False, cache_dir=".//models//diffusers//",
            prior=None,
            text_encoder=None,
            tokenizer=None,
            scheduler=None,
            variant="bf16",
            torch_dtype=torch.float32)

        if i2iSource1:
            image_embeds1, _ = prior.encode_image(images=[i2iSource1], device='cpu', dtype=torch.float32, batch_size=1, num_images_per_prompt=1)
            image_embeds1 = image_embeds1.to('cuda').to(dtype)
            del i2iSource1
        else:
            image_embeds1 = image_embeds0

        if i2iSource2:
            image_embeds2, _ = prior.encode_image(images=[i2iSource2], device='cpu', dtype=torch.float32, batch_size=1, num_images_per_prompt=1)
            image_embeds2 = image_embeds2.to('cuda').to(dtype)
        else:
            image_embeds2 = image_embeds0

        del prior
        
        match CascadeMemory.embedsState:
            case 3:         #   0b11: both negative
                positive_image_embeds = torch.cat((image_embeds0, image_embeds0), dim=1)
                negative_image_embeds = torch.cat((image_embeds1, image_embeds2), dim=1)
            case 2:         #   0b10: 1 negative, 2 positive
                positive_image_embeds = image_embeds2
                negative_image_embeds = image_embeds1
            case 1:         #   0b01, 1 positive, 2 negative
                positive_image_embeds = image_embeds1
                negative_image_embeds = image_embeds2
            case 0:         #   0b00,   both positive
                positive_image_embeds = torch.cat((image_embeds1, image_embeds2), dim=1)
                negative_image_embeds = torch.cat((image_embeds0, image_embeds0), dim=1)

        del image_embeds1, image_embeds2
    else:
        positive_image_embeds = image_embeds0
        negative_image_embeds = image_embeds0
    del image_embeds0
        
    ####    note: image_embeds are repeated for num_images in pipeline
    ####    end image embeds

    ####   text encoder
    source = priorModel if (priorModel in models.models_list_prior) else "stabilityai/stable-cascade-prior"
    tokenizer = CLIPTokenizer.from_pretrained(
        source,
        subfolder='tokenizer',
        local_files_only=False, cache_dir=".//models//diffusers//",
        torch_dtype=dtype)

    # def prompt_and_weights (tokenizer, prompt):
        # promptSplit = prompt.split('|')
        # newPrompt = []
        # weights = []
        # max_length = tokenizer.model_max_length
        
        # for s in promptSplit:
            # subpromptSplit = s.strip().split(' ')
            # cleanedPrompt = ' '.join((t.split(':')[0] for t in subpromptSplit))
            # newPrompt.append(cleanedPrompt)

            # subWeights = [1.0]
 
            # for t in subpromptSplit:
                # t = t.split(':')
                # if len(t) == 1:
                    # weight = 1.0
                # elif t[1] == '':
                    # weight = 1.0
                # else:
                    # try:
                        # weight = float(t[1].rstrip(','))
                    # except:
                        # weight = 1.0
     
                # text_inputs = tokenizer(
                    # t[0],
                    # padding=False,
                    # max_length=max_length,
                    # truncation=True,
                    # return_attention_mask=False,
                    # add_special_tokens=False,
                    # return_tensors="pt",
                # )
     
                # tokenLength = len(text_inputs.input_ids[0])
                # for w in range(tokenLength):
                    # subWeights.append(weight)
                    
            # weights.append(subWeights)
        # return newPrompt, weights

    # fixed_positive_prompt, positive_weights = prompt_and_weights(tokenizer, positive_prompt)
    # fixed_negative_prompt, negative_weights = prompt_and_weights(tokenizer, negative_prompt)

    # while len(fixed_positive_prompt) < len(fixed_negative_prompt):
        # fixed_positive_prompt.append('')
        # positive_weights.append([1.0])
    # while len(fixed_positive_prompt) > len(fixed_negative_prompt):
        # fixed_negative_prompt.append('')
        # negative_weights.append([1.0])

    # text_inputs = tokenizer(
        # fixed_positive_prompt + fixed_negative_prompt,
        # padding=True,
        # max_length=tokenizer.model_max_length,
        # truncation=True,
        # return_attention_mask=True,
        # return_tensors="pt",
    # )
        
    # positive_input_ids = text_inputs.input_ids[0:len(fixed_positive_prompt)]
    # negative_input_ids = text_inputs.input_ids[len(fixed_positive_prompt):]

    # positive_attention = text_inputs.attention_mask[0:len(fixed_positive_prompt)]
    # negative_attention = text_inputs.attention_mask[len(fixed_positive_prompt):]


    text_inputs = tokenizer(
        [positive_prompt] + [negative_prompt],
        padding=True,
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_attention_mask=True,
        return_tensors="pt",
    )
    positive_input_ids = text_inputs.input_ids[0:1]
    negative_input_ids = text_inputs.input_ids[1:]
    positive_attention = text_inputs.attention_mask[0:1]
    negative_attention = text_inputs.attention_mask[1:]

    del text_inputs
    del tokenizer

    if CascadeMemory.teCLIP == None or source != CascadeMemory.lastTextEncoder:
        try:
            CascadeMemory.teCLIP = CLIPTextModelWithProjection.from_pretrained(
                source, 
                subfolder='text_encoder',
                local_files_only=False, cache_dir=".//models//diffusers//",
                variant='bf16',
                torch_dtype=dtype)
        except:
            try:
                CascadeMemory.teCLIP = CLIPTextModelWithProjection.from_pretrained(
                    source, 
                    subfolder='text_encoder',
                    local_files_only=False, cache_dir=".//models//diffusers//",
                    torch_dtype=dtype)
            except:
                CascadeMemory.teCLIP = CLIPTextModelWithProjection.from_pretrained(
                    "stabilityai/stable-cascade-prior", 
                    subfolder='text_encoder',
                    local_files_only=False, cache_dir=".//models//diffusers//",
                    variant='bf16',
                    torch_dtype=dtype)
        CascadeMemory.lastTextEncoder = source

    CascadeMemory.teCLIP.cuda()

    text_encoder_output = CascadeMemory.teCLIP(
        positive_input_ids.to('cuda'), attention_mask=positive_attention.to('cuda'), output_hidden_states=True
    )
    positive_embeds = text_encoder_output.hidden_states[-(clipskip+1)]
    positive_pooled = text_encoder_output.text_embeds.unsqueeze(1)

    # positive_mean_before = positive_embeds.mean()
    # for l in range(len(positive_embeds)):
        # for p in range(min(77, len(positive_weights[l]))):
            # positive_embeds[l][p] *= positive_weights[l][p]
    # positive_mean_after = positive_embeds.mean()
    # positive_embeds *= positive_mean_before / positive_mean_after

    positive_embeds = positive_embeds.view(1, -1, 1280)
    positive_pooled = positive_pooled[0].unsqueeze(0)

    positive_embeds = positive_embeds.to(dtype=dtype, device='cuda')
    positive_pooled = positive_pooled.to(dtype=dtype, device='cuda')
    positive_embeds = positive_embeds.repeat_interleave(num_images, dim=0)
    positive_pooled = positive_pooled.repeat_interleave(num_images, dim=0)

    if guidance_scale > 1.0:
        text_encoder_output = CascadeMemory.teCLIP(
            negative_input_ids.to('cuda'), attention_mask=negative_attention.to('cuda'), output_hidden_states=True
        )
        negative_embeds = text_encoder_output.hidden_states[-1]
        negative_pooled = text_encoder_output.text_embeds.unsqueeze(1)

        # negative_mean_before = negative_embeds.mean()
        # for l in range(len(negative_embeds)):
            # for p in range(min(77, len(negative_weights[l]))):
                # negative_embeds[l][p] *= negative_weights[l][p]
        # negative_mean_after = negative_embeds.mean()
        # negative_embeds *= negative_mean_before / negative_mean_after

        negative_embeds = negative_embeds.view(1, -1, 1280)
        negative_pooled = negative_pooled[0].unsqueeze(0)
        negative_embeds = negative_embeds.to(dtype=dtype, device='cuda')
        negative_pooled = negative_pooled.to(dtype=dtype, device='cuda')
        negative_embeds = negative_embeds.repeat_interleave(num_images, dim=0)
        negative_pooled = negative_pooled.repeat_interleave(num_images, dim=0)
    else:
        negative_embeds = None
        negative_pooled = None

    del positive_input_ids, negative_input_ids, positive_attention, negative_attention

    if CascadeMemory.noUnload:
        pass#CascadeMemory.teCLIP.cpu() #   try keeping on GPU to free memory to store full unet
    else:
        CascadeMemory.teCLIP = None
    ####    end text_encoder

    ####    setup prior pipeline
    if CascadeMemory.prior == None:
        CascadeMemory.prior = pipeline.StableCascadePriorPipeline_DoE.from_pretrained(
            "stabilityai/stable-cascade-prior", 
            local_files_only=False, cache_dir=".//models//diffusers//",
            image_encoder=None, feature_extractor=None, tokenizer=None, text_encoder=None,
            prior=None,
            variant='bf16',
            torch_dtype=dtype,)
    ####    end setup prior pipeline

    ####    get prior unet
    if not CascadeMemory.noUnload or priorModel != CascadeMemory.lastPrior:
        print ("StableCascade: loading prior unet ...", end="\r", flush=True)
        if priorModel in models.models_list_prior:
        #   custom diffusers type
            CascadeMemory.prior.prior = StableCascadeUNet.from_pretrained(
                priorModel, 
                subfolder="prior_lite" if "lite" in priorModel else "prior",
                local_files_only=False, cache_dir=".//models//diffusers//",
                use_low_cpu_mem=True,
                torch_dtype=dtype)
        elif priorModel == "lite":
            CascadeMemory.prior.prior = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior", 
                local_files_only=False, cache_dir=".//models//diffusers//",
                subfolder="prior_lite",
                variant="bf16",
                use_low_cpu_mem=True,
                torch_dtype=dtype)
        elif priorModel == "full":
            CascadeMemory.prior.prior = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior", 
                local_files_only=False, cache_dir=".//models//diffusers//",
                subfolder="prior",
                variant="bf16",
                use_low_cpu_mem=True,
                torch_dtype=dtype)
        else:# ".safetensors" in priorModel:
            customStageC = ".//models//diffusers//StableCascadeCustom//StageC//" + priorModel
            CascadeMemory.prior.prior = StableCascadeUNet.from_single_file(
                customStageC,
                local_files_only=True, cache_dir=".//models//diffusers//",
                use_safetensors=True,
                subfolder="prior_lite" if "lite" in priorModel else "prior",
                use_low_cpu_mem=True,
                torch_dtype=dtype,
                config="stabilityai/stable-cascade-prior")

        CascadeMemory.prior.prior.to(memory_format=torch.channels_last)
        CascadeMemory.lastPrior = priorModel if CascadeMemory.noUnload else None
    ####    end get prior unet

    if useLitePrior == False:
        CascadeMemory.prior.enable_sequential_cpu_offload()       # good for full models on 8GB, but unnecessary for lite (and slows down generation)
    else:
        CascadeMemory.prior.to('cuda')

    generator = [torch.Generator(device="cpu").manual_seed(fixed_seed+i) for i in range(num_images)]

    schedulerConfig = dict(CascadeMemory.prior.scheduler.config)
    schedulerConfig['use_karras_sigmas'] = CascadeMemory.karras
    schedulerConfig['clip_sample'] = False
    schedulerConfig.pop('algorithm_type', None) 

    if PriorScheduler == 'DPM++ 2M':
        CascadeMemory.prior.scheduler = DPMSolverMultistepScheduler.from_config(schedulerConfig)
    elif PriorScheduler == "DPM++ 2M SDE":
        schedulerConfig['algorithm_type'] = 'sde-dpmsolver++'
        CascadeMemory.prior.scheduler = DPMSolverMultistepScheduler.from_config(schedulerConfig)
    elif PriorScheduler == "LCM":
        CascadeMemory.prior.scheduler = LCMScheduler.from_config(schedulerConfig)
    elif PriorScheduler == "SA-solver":
        schedulerConfig['algorithm_type'] = 'data_prediction'
        CascadeMemory.prior.scheduler = SASolverScheduler.from_config(schedulerConfig)
    else:
        CascadeMemory.prior.scheduler = DDPMWuerstchenScheduler.from_config(schedulerConfig)

    with torch.inference_mode():
        prior_output = CascadeMemory.prior(
            prompt_embeds                   = positive_embeds,
            prompt_embeds_pooled            = positive_pooled,
            negative_prompt_embeds          = negative_embeds,
            negative_prompt_embeds_pooled   = negative_pooled,

            image_embeds=positive_image_embeds,
            negative_image_embeds=negative_image_embeds,

            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=prior_steps,
            num_images_per_prompt=num_images,
            generator=generator,
        )

    del generator
    
    if not CascadeMemory.noUnload:
        CascadeMemory.prior.prior= None
        CascadeMemory.lastPrior = None

    positive_embeds = prior_output.get("prompt_embeds", None)
    positive_pooled = prior_output.get("prompt_embeds_pooled", None)
    negative_embeds = prior_output.get("negative_prompt_embeds", None)
    negative_pooled = prior_output.get("negative_prompt_embeds_pooled", None)
#i: (num output images, num input images, 768)
#e: (num output images, 77, 1280)
#p: (num output images, 1, 1280)

    gc.collect()
    torch.cuda.empty_cache()

    ####    setup decoder pipeline
    if CascadeMemory.decoder == None:
        CascadeMemory.decoder = pipeline.StableCascadeDecoderPipeline_DoE.from_pretrained(
            "stabilityai/stable-cascade", 
            local_files_only=False, cache_dir=".//models//diffusers//",
            decoder=None, 
            vqgan=None,
            variant='bf16',
            torch_dtype=dtype,)
    ####    end setup decoder pipeline

    ####    get decoder unet
    if not CascadeMemory.noUnload or decoderModel != CascadeMemory.lastDecoder:
        print ("StableCascade: loading decoder unet ...", end="\r", flush=True)
        if decoderModel in models.models_list_decoder:
        #   custom diffusers type
            CascadeMemory.decoder.decoder = StableCascadeUNet.from_pretrained(
                decoderModel, 
                subfolder="decoder_lite" if "lite" in decoderModel else "decoder",
                local_files_only=False, cache_dir=".//models//diffusers//",
                use_low_cpu_mem=True,
                torch_dtype=dtype)
        elif decoderModel == "lite":
            CascadeMemory.decoder.decoder = StableCascadeUNet.from_pretrained(
                "stabilityai/stable-cascade", 
                local_files_only=False, cache_dir=".//models//diffusers//",
                subfolder="decoder_lite",
                variant="bf16",
                use_low_cpu_mem=True,
                torch_dtype=dtype)
        elif decoderModel == "full":
            CascadeMemory.decoder.decoder = StableCascadeUNet.from_pretrained(
                "stabilityai/stable-cascade", 
                local_files_only=False, cache_dir=".//models//diffusers//",
                subfolder="decoder",
                variant="bf16",
                use_low_cpu_mem=True,
                torch_dtype=dtype)
        else:# ".safetensors" in decoderModel:
            customStageC = ".//models//diffusers//StableCascadeCustom//StageC//" + decoderModel
            CascadeMemory.decoder.decoder = StableCascadeUNet.from_single_file(
                customStageC,
                local_files_only=True, cache_dir=".//models//diffusers//",
                use_safetensors=True,
                subfolder="decoder_lite" if "lite" in decoderModel else "decoder",
                use_low_cpu_mem=True,
                torch_dtype=dtype,
                config="stabilityai/stable-cascade")

        CascadeMemory.decoder.decoder.to(memory_format=torch.channels_last)
        CascadeMemory.lastDecoder = decoderModel if CascadeMemory.noUnload else None
    ####    end get decoder unet

    ####    VAE always loaded - it's only 35MB
    if vaeModel == 'madebyollin':
        # Load the Stage-A-ft-HQ model
        CascadeMemory.decoder.vqgan = PaellaVQModel.from_pretrained("madebyollin/stage-a-ft-hq", 
                                              local_files_only=False, cache_dir=".//models//diffusers//", torch_dtype=dtype)
    else:
        #default
        CascadeMemory.decoder.vqgan = PaellaVQModel.from_pretrained("stabilityai/stable-cascade", 
                                              local_files_only=False, cache_dir=".//models//diffusers//", subfolder="vqgan", torch_dtype=dtype)

    CascadeMemory.decoder.enable_model_cpu_offload()

    ##  regenerate the Generator, needed for deterministic outputs - reusing from earlier doesn't work
        #still not correct with custom checkpoint?
    generator = [torch.Generator(device="cpu").manual_seed(fixed_seed+i) for i in range(num_images)]

    #   trying to colour the noise here is 100% ineffective

    schedulerConfig = dict(CascadeMemory.decoder.scheduler.config)
    schedulerConfig['use_karras_sigmas'] = CascadeMemory.karras
    schedulerConfig['clip_sample'] = False
    schedulerConfig.pop('algorithm_type', None) 

    if DecoderScheduler == 'DPM++ 2M':
        CascadeMemory.decoder.scheduler = DPMSolverMultistepScheduler.from_config(schedulerConfig)
    elif DecoderScheduler == "DPM++ 2M SDE":
        schedulerConfig['algorithm_type'] = 'sde-dpmsolver++'
        CascadeMemory.decoder.scheduler = DPMSolverMultistepScheduler.from_config(schedulerConfig)
    elif DecoderScheduler == "LCM":
        CascadeMemory.decoder.scheduler = LCMScheduler.from_config(schedulerConfig)
    elif DecoderScheduler == "SA-solver":
        schedulerConfig['algorithm_type'] = 'data_prediction'
        CascadeMemory.decoder.scheduler = SASolverScheduler.from_config(schedulerConfig)
    else:
        CascadeMemory.decoder.scheduler = DDPMWuerstchenScheduler.from_config(schedulerConfig)

    with torch.inference_mode():
        decoder_output = CascadeMemory.decoder(
            image_embeddings=prior_output.image_embeddings.to(dtype),
            prompt_embeds                   = positive_embeds,
            prompt_embeds_pooled            = positive_pooled,
            negative_prompt_embeds          = negative_embeds,
            negative_prompt_embeds_pooled   = negative_pooled,
            prompt=None,
            negative_prompt=None,
            guidance_scale=1,
            output_type="pil",
            num_inference_steps=decoder_steps,
            generator=generator,
        ).images

    del prior_output, positive_embeds, positive_pooled, negative_embeds, negative_pooled
    del generator
    
    if not CascadeMemory.noUnload:
        CascadeMemory.decoder.decoder = None
        CascadeMemory.decoder.vqgan = None
        CascadeMemory.lastDecoder = None

    gc.collect()
    torch.cuda.empty_cache()

    result = []

    for image in decoder_output:
        info=create_infotext(priorModel, decoderModel, vaeModel, positive_prompt, negative_prompt, clipskip, guidance_scale, prior_steps, decoder_steps, fixed_seed,
                             PriorScheduler, DecoderScheduler, width, height)
        result.append((image, info))
        images.save_image(
            image,
            opts.outdir_samples or opts.outdir_txt2img_samples,
            "",
            fixed_seed,
            positive_prompt,
            opts.samples_format,
            info
        )
        fixed_seed += 1

    gc.collect()
    torch.cuda.empty_cache()

    CascadeMemory.locked = False
    return gradio.Button.update(value='Generate', variant='primary', interactive=True), gradio.Button.update(interactive=True), result


def on_ui_tabs():
    if CascadeMemory.ModuleReload:
        reload (pipeline)
        reload (models)
        reload (styles)

    from modules.ui_components import ToolButton                                                     

    def buildModelsLists ():
        prior = ["lite", "full"] + models.models_list_prior
        decoder = ["lite", "full"] + models.models_list_decoder
        
        import glob
        customStageC = glob.glob(".\models\diffusers\StableCascadeCustom\StageC\*.safetensors")
        customStageB = glob.glob(".\models\diffusers\StableCascadeCustom\StageB\*.safetensors")

        for i in customStageC:
            prior.append(i.split('\\')[-1])

        for i in customStageB:
            decoder.append(i.split('\\')[-1])
        return prior, decoder

    models_list_P, models_list_D = buildModelsLists ()

    def refreshModels ():
        prior, decoder = buildModelsLists ()
        return gradio.Dropdown.update(choices=prior), gradio.Dropdown.update(choices=decoder)

    def getGalleryIndex (evt: gradio.SelectData):
        CascadeMemory.galleryIndex = evt.index

    def reuseLastSeed ():
        return CascadeMemory.lastSeed + CascadeMemory.galleryIndex
        
    def randomSeed ():
        return -1

    def i2iImageFromGallery (gallery):
        try:
            newImage = gallery[CascadeMemory.galleryIndex][0]['name'].split('?')
            return newImage[0]
        except:
            return None

    def i2iSwap (i1, i2):
        return i2, i1

    def toggleNU ():
        if not CascadeMemory.locked:
            CascadeMemory.noUnload ^= True
        return gradio.Button.update(variant=['secondary', 'primary'][CascadeMemory.noUnload])
    def unloadM ():
        if not CascadeMemory.locked:
            CascadeMemory.teCLIP = None
            CascadeMemory.prior = None
            CascadeMemory.decoder = None
            CascadeMemory.lastPrior = None
            CascadeMemory.lastDecoder = None
            CascadeMemory.lastTextEncoder = None
            gc.collect()
            torch.cuda.empty_cache()
        else:
            gradio.Info('Unable to unload models while using them.')
    def clearE ():
        if CascadeMemory.locked:
            CascadeMemory.locked = False
            return gradio.Button.update(value='Generate', variant='primary', interactive=True)
        
    def toggleSP ():
        if not CascadeMemory.locked:
            return gradio.Button.update(variant='primary')
    def superPrompt (prompt, seed):
        tokenizer = getattr (shared, 'SuperPrompt_tokenizer', None)
        superprompt = getattr (shared, 'SuperPrompt_model', None)
        if tokenizer is None:
            tokenizer = T5TokenizerFast.from_pretrained(
                'roborovski/superprompt-v1',
                cache_dir='.//models//diffusers//',
            )
            shared.SuperPrompt_tokenizer = tokenizer
        if superprompt is None:
            superprompt = T5ForConditionalGeneration.from_pretrained(
                'roborovski/superprompt-v1',
                cache_dir='.//models//diffusers//',
                device_map='auto',
                torch_dtype=torch.float16
            )
            shared.SuperPrompt_model = superprompt
            print("SuperPrompt-v1 model loaded successfully.")
            if torch.cuda.is_available():
                superprompt.to('cuda')

        torch.manual_seed(get_fixed_seed(seed))
        device = superprompt.device
        systemprompt1 = "Expand the following prompt to add more detail: "
        
        input_ids = tokenizer(systemprompt1 + prompt, return_tensors="pt").input_ids.to(device)
        outputs = superprompt.generate(input_ids, max_new_tokens=77, repetition_penalty=1.2, do_sample=True)
        dirty_text = tokenizer.decode(outputs[0])
        result = dirty_text.replace("<pad>", "").replace("</s>", "").strip()
        
        return gradio.Button.update(variant='secondary'), result


    def toggleKarras ():
        if not CascadeMemory.locked:
            CascadeMemory.karras ^= True
        return gradio.Button.update(variant='primary' if CascadeMemory.karras == True else 'secondary',
                                value='\U0001D40A' if CascadeMemory.karras == True else '\U0001D542')
    def toggleF16 ():
        if not CascadeMemory.locked:
            CascadeMemory.force_f16 ^= True
        return gradio.Button.update(variant='primary' if CascadeMemory.force_f16 == True else 'secondary')


    def toggleE1 ():
        if not CascadeMemory.locked:
            CascadeMemory.embedsState ^= 2
        return gradio.Button.update(variant='primary' if (CascadeMemory.embedsState & 2) else 'secondary')
    def toggleE2 ():
        if not CascadeMemory.locked:
            CascadeMemory.embedsState ^= 1
        return gradio.Button.update(variant='primary' if (CascadeMemory.embedsState & 1) else 'secondary')
            
    def toggleGenerate ():
        CascadeMemory.locked = True
        return gradio.Button.update(value='...', variant='secondary', interactive=False), gradio.Button.update(interactive=False)

    schedulerList = ["default", "DPM++ 2M", "DPM++ 2M SDE", "LCM", "SA-solver", ]

    def parsePrompt (positive, negative, clipskip, width, height, seed, schedulerP, schedulerD, stepsP, stepsD, cfg):
        p = positive.split('\n')
        lineCount = len(p)

        negative = ''
        
        if "Prompt" != p[0] and "Prompt: " != p[0][0:8]:               #   civitAI style special case
            positive = p[0]
            l = 1
            while (l < lineCount) and not (p[l][0:17] == "Negative prompt: " or p[l][0:7] == "Steps: " or p[l][0:6] == "Size: "):
                if p[l] != '':
                    positive += '\n' + p[l]
                l += 1
        
        for l in range(lineCount):
            if "Prompt" == p[l][0:6]:
                if ": " == p[l][6:8]:                                   #   mine
                    positive = str(p[l][8:])
                    c = 1
                elif "Prompt" == p[l] and (l+1 < lineCount):            #   webUI
                    positive = p[l+1]
                    c = 2
                else:
                    continue

                while (l+c < lineCount) and not (p[l+c][0:10] == "Negative: " or p[l+c][0:15] == "Negative Prompt" or p[l+c] == "Params" or p[l+c][0:7] == "Steps: " or p[l+c][0:6] == "Size "):
                    if p[l+c] != '':
                        positive += '\n' + p[l+c]
                    c += 1
                l += 1

            elif "Negative" == p[l][0:8]:
                if ": " == p[l][8:10]:                                  #   mine
                    negative = str(p[l][10:])
                    c = 1
                elif " prompt: " == p[l][8:17]:                         #   civitAI
                    negative = str(p[l][17:])
                    c = 1
                elif " Prompt" == p[l][8:15] and (l+1 < lineCount):     #   webUI
                    negative = p[l+1]
                    c = 2
                else:
                    continue
                
                while (l+c < lineCount) and not (p[l+c] == "Params" or p[l+c][0:7] == "Steps: " or p[l+c][0:6] == "Size: "):
                    if p[l+c] != '':
                        negative += '\n' + p[l+c]
                    c += 1
                l += 1

            else:
                params = p[l].split(',')
                for k in range(len(params)):
                    pairs = params[k].strip().split(' ')
                    match pairs[0]:
                        case "Size:":
                            size = pairs[1].split('x')
                            width = 128 * ((int(size[0]) + 64) // 128)
                            height = 128 * ((int(size[1]) + 64) // 128)
                        case "Seed:":
                            seed = int(pairs[1])
                        case "Sampler:":
                            sched = ' '.join(pairs[1:])
                            if sched in schedulerList:
                                scheduler = sched
                        case "Scheduler(Prior/Decoder):":
                            sched = ' '.join(pairs[1:])
                            sched = sched.split('/')
                            if sched[0] in schedulerList:
                                schedulerP = sched[0]
                            if sched[1] in schedulerList:
                                schedulerD = sched[1]
                        case "Scheduler:":
                            sched = ' '.join(pairs[1:])
                            if sched in schedulerList:
                                schedulerP = sched
                        case "Steps(Prior/Decoder):":
                            steps = str(pairs[1]).split('/')
                            stepsP = int(steps[0])
                            stepsD = int(steps[1])
                        case "Steps:":
                            stepsP = int(pairs[1])
                        case "CFG":
                            if "scale:" == pairs[1]:
                                cfg = float(pairs[2])
                        case "CFG:":
                            cfg = float(pairs[1])
                        case "width:":
                            width = 128 * ((int(pairs[1]) + 64) // 128)
                        case "height:":
                            height = 128 * ((int(pairs[1]) + 64) // 128)
                        case "CLIP skip:":
                            clipskip = int(pairs[1])
        return positive, negative, clipskip, width, height, seed, schedulerP, schedulerD, stepsP, stepsD, cfg



    with gradio.Blocks() as stable_cascade_block:
        with ResizeHandleRow():
            with gradio.Column():
                with gradio.Row():
                    refresh = ToolButton(value='\U0001f504')
                    modelP = gradio.Dropdown(models_list_P, label='Stage C (Prior)', value="lite", type='value', scale=2)
                    modelD = gradio.Dropdown(models_list_D, label='Stage B (Decoder)', value="lite", type='value', scale=2)
                    modelV = gradio.Dropdown(['default', 'madebyollin'], label='Stage A (VAE)', value='default', type='value', scale=0)
                    clipskip = gradio.Number(label='CLIP skip', minimum=0, maximum=2, step=1, value=0, precision=0, scale=1)

                with gradio.Row():
                    parse = ToolButton(value="↙️", variant='secondary', tooltip="parse")
                    SP = ToolButton(value='ꌗ', variant='secondary', tooltip='zero out negative embeds')
                    karras = ToolButton(value="\U0001D542", variant='secondary', tooltip="use Karras sigmas")
                    schedulerP = gradio.Dropdown(schedulerList, label='Sampler (Prior)', value="default", type='value', scale=1)
                    schedulerD = gradio.Dropdown(schedulerList, label='Sampler (Decoder)', value="default", type='value', scale=1)
                    style = gradio.Dropdown([x[0] for x in styles.styles_list], label='Style', value="(None)", type='index', scale=1)
                    f16 = ToolButton(value="f16", variant='secondary', tooltip="force float16")

                with gradio.Row():
                    prompt = gradio.Textbox(label='Prompt', placeholder='Enter a prompt here...', default='', lines=2)

                with gradio.Row():
                    negative_prompt = gradio.Textbox(label='Negative', placeholder='', lines=1.0)
                with gradio.Row():
                    width = gradio.Slider(label='Width', minimum=128, maximum=4096, step=128, value=1024, elem_id="StableCascade_width")
                    swapper = ToolButton(value="\U000021C4")
                    height = gradio.Slider(label='Height', minimum=128, maximum=4096, step=128, value=1024, elem_id="StableCascade_height")
                with gradio.Row():
                    prior_steps = gradio.Slider(label='Steps (Prior)', minimum=1, maximum=60, step=1, value=20)
                    decoder_steps = gradio.Slider(label='Steps (Decoder)', minimum=1, maximum=40, step=1, value=10)
                with gradio.Row():
                    guidance_scale = gradio.Slider(label='CFG', minimum=1, maximum=16, step=0.1, value=4.0)
                    sampling_seed = gradio.Number(label='Seed', value=-1, precision=0, scale=0)
                    random = ToolButton(value="\U0001f3b2\ufe0f")
                    reuseSeed = ToolButton(value="\u267b\ufe0f")
                    batch_size = gradio.Number(label='Batch Size', minimum=1, maximum=9, value=1, precision=0, scale=0)
#                with gradio.Row():
#                    resolution = gradio.Slider(label='Resolution multiple (prior)', minimum=32, maximum=64, step=0.01, value=42.67)
#                    latentScale = gradio.Slider(label='Latent scale (VAE)', minimum=6, maximum=16, step=0.01, value=10.67)

                with gradio.Accordion(label='Image prompt', open=False):
#add start/end? would need to modify pipeline

                    with gradio.Row():
                        i2iSource1 = gradio.Image(label='image source', sources=['upload'], type='pil', interactive=True, show_download_button=False)
                        i2iSource2 = gradio.Image(sources=['upload'], type='pil', interactive=True, show_download_button=False)
                    with gradio.Row():
                        embed1State = ToolButton('Neg', variant='secondary')
                        i2iFromGallery1 = gradio.Button(value='Get image (1) from gallery', scale=6)
                        i2iFromGallery2 = gradio.Button(value='Get image (2) from gallery', scale=6)
                        embed2State = ToolButton('Neg', variant='secondary')
                    with gradio.Row():
                        swapImages = gradio.Button(value='Swap images')

                with gradio.Row():
                    noUnload = gradio.Button(value='keep models loaded', variant='primary' if CascadeMemory.noUnload else 'secondary', tooltip='noUnload', scale=1)
                    unloadModels = gradio.Button(value='unload models', tooltip='force unload of models', scale=1)
#                    clearError = gradio.Button(value='remove Error', tooltip='clear Error', scale=1)

                ctrls = [modelP, modelD, modelV, prompt, negative_prompt, clipskip, width, height, guidance_scale, prior_steps, decoder_steps,
                         sampling_seed, batch_size, schedulerP, schedulerD, style, i2iSource1, i2iSource2]#, resolution, latentScale]

            with gradio.Column():
                generate_button = gradio.Button(value="Generate", variant='primary')
                output_gallery = gradio.Gallery(label='Output', height="75vh", show_label=False,
                                            object_fit='contain', visible=True, columns=1, preview=True)
                
                with gradio.Row():
                    buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])

                for tabname, button in buttons.items():
                    parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
                        paste_button=button, tabname=tabname, source_text_component=prompt, source_image_component=output_gallery,
                    ))

        noUnload.click(toggleNU, inputs=[], outputs=noUnload)
        unloadModels.click(unloadM, inputs=[], outputs=[], show_progress=True)
#        clearError.click(clearE, inputs=[], outputs=[generate_button])

        SP.click(toggleSP, inputs=[], outputs=SP)
        SP.click(superPrompt, inputs=[prompt, sampling_seed], outputs=[SP, prompt])

        parse.click(parsePrompt, inputs=[prompt, negative_prompt, clipskip, width, height, sampling_seed, schedulerP, schedulerD, prior_steps, decoder_steps, guidance_scale], outputs=[prompt, negative_prompt, clipskip, width, height, sampling_seed, schedulerP, schedulerD, prior_steps, decoder_steps, guidance_scale], show_progress=False)
        refresh.click(refreshModels, inputs=[], outputs=[modelP, modelD])
        karras.click(toggleKarras, inputs=[], outputs=karras)
        f16.click(toggleF16, inputs=[], outputs=f16)
        swapper.click(fn=None, _js="function(){switchWidthHeight('StableCascade')}", inputs=None, outputs=None, show_progress=False)
        random.click(randomSeed, inputs=[], outputs=sampling_seed, show_progress=False)
        reuseSeed.click(reuseLastSeed, inputs=[], outputs=sampling_seed, show_progress=False)

        i2iFromGallery1.click (fn=i2iImageFromGallery, inputs=[output_gallery], outputs=[i2iSource1])
        i2iFromGallery2.click (fn=i2iImageFromGallery, inputs=[output_gallery], outputs=[i2iSource2])
        swapImages.click (fn=i2iSwap, inputs=[i2iSource1, i2iSource2], outputs=[i2iSource1, i2iSource2])
        embed1State.click(fn=toggleE1, inputs=[], outputs=[embed1State], show_progress=False)
        embed2State.click(fn=toggleE2, inputs=[], outputs=[embed2State], show_progress=False)
        output_gallery.select (fn=getGalleryIndex, inputs=[], outputs=[])

        generate_button.click(predict, inputs=ctrls, outputs=[generate_button, SP, output_gallery])
        generate_button.click(toggleGenerate, inputs=[], outputs=[generate_button, SP])
    return [(stable_cascade_block, "StableCascade", "stable_cascade_DoE")]

script_callbacks.on_ui_tabs(on_ui_tabs)