File size: 7,873 Bytes
ecc4278 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
from __future__ import annotations
import gradio as gr
import logging
import os
import re
import lora_patches
import functools
import network
import torch
from typing import Union
from modules import shared, sd_models, errors, scripts
from ldm_patched.modules.utils import load_torch_file
from ldm_patched.modules.sd import load_lora_for_models
@functools.lru_cache(maxsize=5)
def load_lora_state_dict(filename):
return load_torch_file(filename, safe_load=True)
def convert_diffusers_name_to_compvis(key, is_sd2):
pass
def assign_network_names_to_compvis_modules(sd_model):
pass
class BundledTIHash(str):
def __init__(self, hash_str):
self.hash = hash_str
def __str__(self):
return self.hash if shared.opts.lora_bundled_ti_to_infotext else ''
def load_network(name, network_on_disk):
net = network.Network(name, network_on_disk)
net.mtime = os.path.getmtime(network_on_disk.filename)
return net
def purge_networks_from_memory():
pass
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
global lora_state_dict_cache
current_sd = sd_models.model_data.get_sd_model()
if current_sd is None:
return
loaded_networks.clear()
unavailable_networks = []
for name in names:
if name.lower() in forbidden_network_aliases and available_networks.get(name) is None:
unavailable_networks.append(name)
elif available_network_aliases.get(name) is None:
unavailable_networks.append(name)
if unavailable_networks:
update_available_networks_by_names(unavailable_networks)
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
try:
net = load_network(name, network_on_disk)
except Exception as e:
errors.display(e, f"loading network {network_on_disk.filename}")
continue
net.mentioned_name = name
network_on_disk.read_hash()
loaded_networks.append(net)
compiled_lora_targets = []
for a, b, c in zip(networks_on_disk, unet_multipliers, te_multipliers):
compiled_lora_targets.append([a.filename, b, c])
compiled_lora_targets_hash = str(compiled_lora_targets)
if current_sd.current_lora_hash == compiled_lora_targets_hash:
return
current_sd.current_lora_hash = compiled_lora_targets_hash
current_sd.forge_objects.unet = current_sd.forge_objects_original.unet
current_sd.forge_objects.clip = current_sd.forge_objects_original.clip
for filename, strength_model, strength_clip in compiled_lora_targets:
lora_sd = load_lora_state_dict(filename)
current_sd.forge_objects.unet, current_sd.forge_objects.clip = load_lora_for_models(
current_sd.forge_objects.unet, current_sd.forge_objects.clip, lora_sd, strength_model, strength_clip,
filename=filename)
current_sd.forge_objects_after_applying_lora = current_sd.forge_objects.shallow_copy()
return
def allowed_layer_without_weight(layer):
if isinstance(layer, torch.nn.LayerNorm) and not layer.elementwise_affine:
return True
return False
def store_weights_backup(weight):
if weight is None:
return None
return weight.to(devices.cpu, copy=True)
def restore_weights_backup(obj, field, weight):
if weight is None:
setattr(obj, field, None)
return
getattr(obj, field).copy_(weight)
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
pass
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
pass
def network_forward(org_module, input, original_forward):
pass
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
pass
def network_Linear_forward(self, input):
pass
def network_Linear_load_state_dict(self, *args, **kwargs):
pass
def network_Conv2d_forward(self, input):
pass
def network_Conv2d_load_state_dict(self, *args, **kwargs):
pass
def network_GroupNorm_forward(self, input):
pass
def network_GroupNorm_load_state_dict(self, *args, **kwargs):
pass
def network_LayerNorm_forward(self, input):
pass
def network_LayerNorm_load_state_dict(self, *args, **kwargs):
pass
def network_MultiheadAttention_forward(self, *args, **kwargs):
pass
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
pass
def process_network_files(names: list[str] | None = None):
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
# if names is provided, only load networks with names in the list
if names and name not in names:
continue
try:
entry = network.NetworkOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
continue
available_networks[name] = entry
if entry.alias in available_network_aliases:
forbidden_network_aliases[entry.alias.lower()] = 1
available_network_aliases[name] = entry
available_network_aliases[entry.alias] = entry
def update_available_networks_by_names(names: list[str]):
process_network_files(names)
def list_available_networks():
available_networks.clear()
available_network_aliases.clear()
forbidden_network_aliases.clear()
available_network_hash_lookup.clear()
forbidden_network_aliases.update({"none": 1, "Addams": 1})
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
process_network_files()
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
def infotext_pasted(infotext, params):
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
return # if the other extension is active, it will handle those fields, no need to do anything
added = []
for k in params:
if not k.startswith("AddNet Model "):
continue
num = k[13:]
if params.get("AddNet Module " + num) != "LoRA":
continue
name = params.get("AddNet Model " + num)
if name is None:
continue
m = re_network_name.match(name)
if m:
name = m.group(1)
multiplier = params.get("AddNet Weight A " + num, "1.0")
added.append(f"<lora:{name}:{multiplier}>")
if added:
params["Prompt"] += "\n" + "".join(added)
originals: lora_patches.LoraPatches = None
extra_network_lora = None
available_networks = {}
available_network_aliases = {}
loaded_networks = []
loaded_bundle_embeddings = {}
networks_in_memory = {}
available_network_hash_lookup = {}
forbidden_network_aliases = {}
list_available_networks()
|