DMP-PCFC / util.py
XingyuLiang's picture
Upload 75 files
cd1df48 verified
import pickle
import numpy as np
import os
import scipy.sparse as sp
import torch
from scipy.sparse import linalg
from torch.autograd import Variable
import pandas as pd
def mape_loss(target, input):
return (torch.abs(input - target) / (torch.abs(target) + 1e-2)).mean() * 100
def MAPE(y_true, y_pre):
y_true = (y_true).reshape((-1, 1))
y_pre = (y_pre).reshape((-1, 1))
# e = (y_true + y_pre) / 2 + 1e-2
# re = (np.abs(y_true - y_pre) / (np.abs(y_true) + e)).mean()
re = np.mean(np.abs((y_true - y_pre) / y_true)) * 100
return re
def normal_std(x):
return x.std() * np.sqrt((len(x) - 1.) / (len(x)))
class DataLoaderS(object):
# train and valid is the ratio of training set and validation set. test = 1 - train - valid
def __init__(self, file_name, train, valid, device, horizon, window, normalize=2):
self.device = device
self.P = window
self.h = horizon
fin = open(file_name)
self.rawdat = np.loadtxt(fin, delimiter=',', skiprows=1)
self.dat = np.zeros(self.rawdat.shape)
self.n, self.m = self.dat.shape
self.scale_mean = np.ones(self.m)
self.scale_std = np.ones(self.m)
self.train_size = train
# self.scale = np.ones(self.m)
# self._absolute_distance_normalized(normalize)
self._z_score_normalized(normalize)
self.train_feas = self.dat[:int(train * self.n), :]
self._split(int(train * self.n), int((train + valid) * self.n), self.n)
# self.de_scale_std = torch.from_numpy(self.scale_std[:3]).float().to(self.device)
# self.de_scale_mean = torch.from_numpy(self.scale_mean[:3]).float().to(self.device)
# self.scale = torch.from_numpy(self.scale[:3]).float()
# self.scale = self.scale.to(device)
# self.scale = Variable(self.scale)
def _z_score_normalized(self, normalize):
for i in range(self.m):
self.scale_mean[i] = np.mean(self.rawdat[:int(self.train_size * self.n), i])
self.scale_std[i] = np.std(self.rawdat[:int(self.train_size * self.n), i])
self.dat[:, i] = (self.rawdat[:, i] - self.scale_mean[i]) / self.scale_std[i]
df = pd.DataFrame(self.dat)
df.to_csv('data/data_set_z_score.csv', index=False)
def _de_z_score_normalized(self, y, device_flag):
if device_flag == 'cpu':
de_scale_std = self.scale_std[:3]#.to(self.device)
de_scale_mean = self.scale_mean[:3]#.to(self.device)
return y * de_scale_std + de_scale_mean
else:
de_scale_std = torch.from_numpy(self.scale_std[:3]).float().to(self.device)
de_scale_mean = torch.from_numpy(self.scale_mean[:3]).float().to(self.device)
return y * de_scale_std + de_scale_mean
def _absolute_distance_normalized(self, normalize):
for i in range(self.m):
self.scale[i] = np.max(np.abs(self.rawdat[:, i]))
self.dat[:, i] = self.rawdat[:, i] / np.max(np.abs(self.rawdat[:, i]))
def _split(self, train, valid, test):
train_set = range(self.P + self.h - 1, train)
valid_set = range(train, valid)
test_set = range(valid, self.n)
self.train = self._batchify(train_set, self.h)
self.valid = self._batchify(valid_set, self.h)
self.test = self._batchify(test_set, self.h)
def _batchify(self, idx_set, horizon):
# print("datshape", self.dat.shape)
n = len(idx_set)
X = torch.zeros((n, self.P, self.m))
Y = torch.zeros((n, self.h, self.m))
for i in range(n):
end = idx_set[i] - self.h + 1
start = end - self.P
X[i, :, :] = torch.from_numpy(self.dat[start:end, :])
Y[i, :, :] = torch.from_numpy(self.dat[idx_set[i] + 1 - horizon:idx_set[i] + 1, :])
return [X, Y]
def get_batches(self, inputs, targets, batch_size, shuffle=True):
length = len(inputs)
if shuffle:
index = torch.randperm(length)
else:
index = torch.LongTensor(range(length))
start_idx = 0
while (start_idx < length):
end_idx = min(length, start_idx + batch_size)
excerpt = index[start_idx:end_idx]
X = inputs[excerpt]
Y = targets[excerpt]
X = X.to(self.device)
Y = Y.to(self.device)
yield Variable(X), Variable(Y)
start_idx += batch_size
class DataLoaderM(object):
def __init__(self, xs, ys, batch_size, pad_with_last_sample=True):
"""
:param xs:
:param ys:
:param batch_size:
:param pad_with_last_sample: pad with the last sample to make number of samples divisible to batch_size.
"""
self.batch_size = batch_size
self.current_ind = 0
if pad_with_last_sample:
num_padding = (batch_size - (len(xs) % batch_size)) % batch_size
x_padding = np.repeat(xs[-1:], num_padding, axis=0)
y_padding = np.repeat(ys[-1:], num_padding, axis=0)
xs = np.concatenate([xs, x_padding], axis=0)
ys = np.concatenate([ys, y_padding], axis=0)
self.size = len(xs)
self.num_batch = int(self.size // self.batch_size)
self.xs = xs
self.ys = ys
def shuffle(self):
permutation = np.random.permutation(self.size)
xs, ys = self.xs[permutation], self.ys[permutation]
self.xs = xs
self.ys = ys
def get_iterator(self):
self.current_ind = 0
def _wrapper():
while self.current_ind < self.num_batch:
start_ind = self.batch_size * self.current_ind
end_ind = min(self.size, self.batch_size * (self.current_ind + 1))
x_i = self.xs[start_ind: end_ind, ...]
y_i = self.ys[start_ind: end_ind, ...]
yield (x_i, y_i)
self.current_ind += 1
return _wrapper()
class StandardScaler():
"""
Standard the input
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def transform(self, data):
return (data - self.mean) / self.std
def inverse_transform(self, data):
return (data * self.std) + self.mean
def sym_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).astype(np.float32).todense()
def asym_adj(adj):
"""Asymmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1)).flatten()
d_inv = np.power(rowsum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
return d_mat.dot(adj).astype(np.float32).todense()
def calculate_normalized_laplacian(adj):
"""
# L = D^-1/2 (D-A) D^-1/2 = I - D^-1/2 A D^-1/2
# D = diag(A 1)
:param adj:
:return:
"""
adj = sp.coo_matrix(adj)
d = np.array(adj.sum(1))
d_inv_sqrt = np.power(d, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
normalized_laplacian = sp.eye(adj.shape[0]) - adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
return normalized_laplacian
def calculate_scaled_laplacian(adj_mx, lambda_max=2, undirected=True):
if undirected:
adj_mx = np.maximum.reduce([adj_mx, adj_mx.T])
L = calculate_normalized_laplacian(adj_mx)
if lambda_max is None:
lambda_max, _ = linalg.eigsh(L, 1, which='LM')
lambda_max = lambda_max[0]
L = sp.csr_matrix(L)
M, _ = L.shape
I = sp.identity(M, format='csr', dtype=L.dtype)
L = (2 / lambda_max * L) - I
return L.astype(np.float32).todense()
def load_pickle(pickle_file):
try:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f)
except UnicodeDecodeError as e:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f, encoding='latin1')
except Exception as e:
print('Unable to load data ', pickle_file, ':', e)
raise
return pickle_data
def load_adj(pkl_filename):
sensor_ids, sensor_id_to_ind, adj = load_pickle(pkl_filename)
return adj
def load_dataset(dataset_dir, batch_size, valid_batch_size=None, test_batch_size=None):
data = {}
for category in ['train', 'val', 'test']:
cat_data = np.load(os.path.join(dataset_dir, category + '.npz'))
data['x_' + category] = cat_data['x']
data['y_' + category] = cat_data['y']
scaler = StandardScaler(mean=data['x_train'][..., 0].mean(), std=data['x_train'][..., 0].std())
# Data format
for category in ['train', 'val', 'test']:
data['x_' + category][..., 0] = scaler.transform(data['x_' + category][..., 0])
data['train_loader'] = DataLoaderM(data['x_train'], data['y_train'], batch_size)
data['val_loader'] = DataLoaderM(data['x_val'], data['y_val'], valid_batch_size)
data['test_loader'] = DataLoaderM(data['x_test'], data['y_test'], test_batch_size)
data['scaler'] = scaler
return data
def masked_mse(preds, labels, null_val=np.nan):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels != null_val)
mask = mask.float()
mask /= torch.mean((mask))
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
loss = (preds - labels) ** 2
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
def masked_rmse(preds, labels, null_val=np.nan):
return torch.sqrt(masked_mse(preds=preds, labels=labels, null_val=null_val))
def masked_mae(preds, labels, null_val=np.nan):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels != null_val)
mask = mask.float()
mask /= torch.mean((mask))
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
loss = torch.abs(preds - labels)
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
def masked_mape(preds, labels, null_val=np.nan):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels != null_val)
mask = mask.float()
mask /= torch.mean((mask))
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
loss = torch.abs(preds - labels) / labels
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
def metric(pred, real):
mae = masked_mae(pred, real, 0.0).item()
mape = masked_mape(pred, real, 0.0).item()
rmse = masked_rmse(pred, real, 0.0).item()
return mae, mape, rmse
def load_node_feature(path):
fi = open(path)
x = []
for li in fi:
li = li.strip()
li = li.split(",")
e = [float(t) for t in li[1:]]
x.append(e)
x = np.array(x)
mean = np.mean(x, axis=0)
std = np.std(x, axis=0)
z = torch.tensor((x - mean) / std, dtype=torch.float)
return z
def normal_std(x):
return x.std() * np.sqrt((len(x) - 1.) / (len(x)))