File size: 5,398 Bytes
cd1df48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch.optim as optim
import util
import torch
from torch.optim.lr_scheduler import ReduceLROnPlateau, OneCycleLR, CosineAnnealingLR, ExponentialLR
class Trainer():
    def __init__(self, model, lrate, wdecay, clip, step_size, seq_out_len, scaler, device, cl=True):
        self.scaler = scaler
        self.model = model
        self.model.to(device)
        self.optimizer = optim.Adam(self.model.parameters(), lr=lrate, weight_decay=wdecay)
        self.loss = util.masked_mae
        self.clip = clip
        self.step = step_size
        self.iter = 1
        self.task_level = 1
        self.seq_out_len = seq_out_len
        self.cl = cl

    def train(self, input, real_val, idx=None):
        self.model.train()
        self.optimizer.zero_grad()
        output = self.model(input, idx=idx)
        output = output.transpose(1,3)
        real = torch.unsqueeze(real_val,dim=1)
        predict = self.scaler.inverse_transform(output)
        if self.iter%self.step==0 and self.task_level<=self.seq_out_len:
            self.task_level +=1
        if self.cl:
            loss = self.loss(predict[:, :, :, :self.task_level], real[:, :, :, :self.task_level], 0.0)
        else:
            loss = self.loss(predict, real, 0.0)

        loss.backward()

        if self.clip is not None:
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip)

        self.optimizer.step()
        # mae = util.masked_mae(predict,real,0.0).item()
        mape = util.masked_mape(predict,real,0.0).item()
        rmse = util.masked_rmse(predict,real,0.0).item()
        self.iter += 1
        return loss.item(),mape,rmse

    def eval(self, input, real_val):
        self.model.eval()
        output = self.model(input)
        output = output.transpose(1,3)
        real = torch.unsqueeze(real_val,dim=1)
        predict = self.scaler.inverse_transform(output)
        loss = self.loss(predict, real, 0.0)
        mape = util.masked_mape(predict,real,0.0).item()
        rmse = util.masked_rmse(predict,real,0.0).item()
        return loss.item(),mape,rmse



class Optim(object):

    def _makeOptimizer(self):
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.lr, weight_decay=self.lr_decay)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.lr, weight_decay=self.lr_decay)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.lr, weight_decay=self.lr_decay)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.lr, weight_decay=self.lr_decay)
        elif self.method == 'Nadam':
            self.optimizer = optim.NAdam(self.params, lr=self.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
        elif self.method == 'adamw':
            self.optimizer = optim.AdamW(self.params, lr=self.lr, weight_decay=self.lr_decay)
        else:
            raise RuntimeError("Invalid optim method: " + self.method)

    def __init__(self, params, method, lr, clip, mode, factor, patience, steps_per_epoch, epochs, lr_decay=1, start_decay_at=None):
        self.params = params  # careful: params may be a generator
        self.last_ppl = None
        self.lr = lr
        self.clip = clip
        self.method = method
        self.lr_decay = lr_decay
        self.start_decay_at = start_decay_at
        self.start_decay = False
        self._makeOptimizer()
        self.scheduler = ReduceLROnPlateau(self.optimizer, mode=mode, factor=factor, patience=patience, verbose=True)
        # self.scheduler = ExponentialLR(self.optimizer,gamma=0.9, verbose=True)
        # self.scheduler = CosineAnnealingLR(self.optimizer,  max_lr=0.005, steps_per_epoch=steps_per_epoch, epochs=epochs, div_factor=1.1, final_div_factor=10)


    def step(self):
        # Compute gradients norm.
        grad_norm = 0
        if self.clip is not None:
            torch.nn.utils.clip_grad_norm_(self.params, self.clip)

        # for param in self.params:
        #     grad_norm += math.pow(param.grad.data.norm(), 2)
        #
        # grad_norm = math.sqrt(grad_norm)
        # if grad_norm > 0:
        #     shrinkage = self.max_grad_norm / grad_norm
        # else:
        #     shrinkage = 1.
        #
        # for param in self.params:
        #     if shrinkage < 1:
        #         param.grad.data.mul_(shrinkage)
        self.optimizer.step()
        return grad_norm

    def lronplateau(self, loss):
        self.scheduler.step(loss)
    def EXlr(self):
        self.scheduler.step()
    def CosineAnnealingLR(self):
        self.scheduler.step()
    # decay learning rate if val perf does not improve or we hit the start_decay_at limit
    def updateLearningRate(self, ppl, epoch):
        if self.start_decay_at is not None and epoch >= self.start_decay_at:
            self.start_decay = True
        if self.last_ppl is not None and ppl > self.last_ppl:
            self.start_decay = True

        if self.start_decay:
            self.lr = self.lr * self.lr_decay
            print("Decaying learning rate to %g" % self.lr)
        #only decay for one epoch
        self.start_decay = False

        self.last_ppl = ppl

        self._makeOptimizer()