Safetensors
qwen3
sudo-xda commited on
Commit
f2fd34d
Β·
verified Β·
1 Parent(s): ca5a106

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -3
README.md CHANGED
@@ -1,3 +1,60 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - HuggingFaceH4/CodeAlpaca_20K
5
+ base_model:
6
+ - Qwen/Qwen3-0.6B
7
+ ---
8
+ # 🧠 Qwen-0.6B – Code Generation Model
9
+
10
+ **Model Repo:** `XformAI-india/qwen-0.6b-coder`
11
+ **Base Model:** [`Qwen/Qwen-0.5B`](https://huggingface.co/Qwen/Qwen-0.5B)
12
+ **Task:** Code generation and completion
13
+ **Trained by:** [XformAI](https://xformai.in)
14
+ **Date:** May 2025
15
+
16
+ ---
17
+
18
+ ## πŸ” What is this?
19
+
20
+ This is a fine-tuned version of Qwen-0.6B optimized for **code generation, completion, and programming logic reasoning**.
21
+
22
+ It’s designed to be lightweight, fast, and capable of handling common developer tasks across multiple programming languages.
23
+
24
+ ---
25
+
26
+ ## πŸ’» Use Cases
27
+
28
+ - AI-powered code assistants
29
+ - Auto-completion for IDEs
30
+ - Offline code generation
31
+ - Learning & training environments
32
+ - Natural language β†’ code prompts
33
+
34
+ ---
35
+
36
+ ## πŸ“š Training Details
37
+
38
+ | Parameter | Value |
39
+ |---------------|--------------|
40
+ | Epochs | 3 |
41
+ | Batch Size | 16 |
42
+ | Optimizer | AdamW |
43
+ | Precision | bfloat16 |
44
+ | Context Window | 2048 tokens |
45
+ | Framework | πŸ€— Transformers + LoRA (PEFT)
46
+
47
+ ---
48
+
49
+ ## πŸš€ Example Usage
50
+
51
+ ```python
52
+ from transformers import AutoModelForCausalLM, AutoTokenizer
53
+
54
+ model = AutoModelForCausalLM.from_pretrained("XformAI-india/qwen-0.6b-coder")
55
+ tokenizer = AutoTokenizer.from_pretrained("XformAI-india/qwen-0.6b-coder")
56
+
57
+ prompt = "Write a Python function that checks if a number is prime:"
58
+ inputs = tokenizer(prompt, return_tensors="pt")
59
+ outputs = model.generate(**inputs, max_new_tokens=150)
60
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))