Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- HuggingFaceH4/CodeAlpaca_20K
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen3-0.6B
|
7 |
+
---
|
8 |
+
# π§ Qwen-0.6B β Code Generation Model
|
9 |
+
|
10 |
+
**Model Repo:** `XformAI-india/qwen-0.6b-coder`
|
11 |
+
**Base Model:** [`Qwen/Qwen-0.5B`](https://huggingface.co/Qwen/Qwen-0.5B)
|
12 |
+
**Task:** Code generation and completion
|
13 |
+
**Trained by:** [XformAI](https://xformai.in)
|
14 |
+
**Date:** May 2025
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
## π What is this?
|
19 |
+
|
20 |
+
This is a fine-tuned version of Qwen-0.6B optimized for **code generation, completion, and programming logic reasoning**.
|
21 |
+
|
22 |
+
Itβs designed to be lightweight, fast, and capable of handling common developer tasks across multiple programming languages.
|
23 |
+
|
24 |
+
---
|
25 |
+
|
26 |
+
## π» Use Cases
|
27 |
+
|
28 |
+
- AI-powered code assistants
|
29 |
+
- Auto-completion for IDEs
|
30 |
+
- Offline code generation
|
31 |
+
- Learning & training environments
|
32 |
+
- Natural language β code prompts
|
33 |
+
|
34 |
+
---
|
35 |
+
|
36 |
+
## π Training Details
|
37 |
+
|
38 |
+
| Parameter | Value |
|
39 |
+
|---------------|--------------|
|
40 |
+
| Epochs | 3 |
|
41 |
+
| Batch Size | 16 |
|
42 |
+
| Optimizer | AdamW |
|
43 |
+
| Precision | bfloat16 |
|
44 |
+
| Context Window | 2048 tokens |
|
45 |
+
| Framework | π€ Transformers + LoRA (PEFT)
|
46 |
+
|
47 |
+
---
|
48 |
+
|
49 |
+
## π Example Usage
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
53 |
+
|
54 |
+
model = AutoModelForCausalLM.from_pretrained("XformAI-india/qwen-0.6b-coder")
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained("XformAI-india/qwen-0.6b-coder")
|
56 |
+
|
57 |
+
prompt = "Write a Python function that checks if a number is prime:"
|
58 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
59 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
60 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|