Transformers.js v3.5 optimizations
Browse files
README.md
CHANGED
@@ -12,9 +12,9 @@ https://github.com/apple/ml-mobileclip with ONNX weights to be compatible with T
|
|
12 |
|
13 |
## Usage (Transformers.js)
|
14 |
|
15 |
-
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@
|
16 |
```bash
|
17 |
-
npm i @
|
18 |
```
|
19 |
|
20 |
**Example:** Perform zero-shot image classification.
|
@@ -27,7 +27,7 @@ import {
|
|
27 |
RawImage,
|
28 |
dot,
|
29 |
softmax,
|
30 |
-
} from '@
|
31 |
|
32 |
const model_id = 'Xenova/mobileclip_s1';
|
33 |
|
@@ -37,9 +37,7 @@ const text_model = await CLIPTextModelWithProjection.from_pretrained(model_id);
|
|
37 |
|
38 |
// Load processor and vision model
|
39 |
const processor = await AutoProcessor.from_pretrained(model_id);
|
40 |
-
const vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id
|
41 |
-
quantized: false, // NOTE: vision model is sensitive to quantization.
|
42 |
-
});
|
43 |
|
44 |
// Run tokenization
|
45 |
const texts = ['cats', 'dogs', 'birds'];
|
|
|
12 |
|
13 |
## Usage (Transformers.js)
|
14 |
|
15 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
16 |
```bash
|
17 |
+
npm i @huggingface/transformers
|
18 |
```
|
19 |
|
20 |
**Example:** Perform zero-shot image classification.
|
|
|
27 |
RawImage,
|
28 |
dot,
|
29 |
softmax,
|
30 |
+
} from '@huggingface/transformers';
|
31 |
|
32 |
const model_id = 'Xenova/mobileclip_s1';
|
33 |
|
|
|
37 |
|
38 |
// Load processor and vision model
|
39 |
const processor = await AutoProcessor.from_pretrained(model_id);
|
40 |
+
const vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id);
|
|
|
|
|
41 |
|
42 |
// Run tokenization
|
43 |
const texts = ['cats', 'dogs', 'birds'];
|