File size: 9,743 Bytes
0fb64e3 497391b 0fb64e3 c3007a5 4b8c1c5 0450e29 497391b 204bb76 5e9c461 c3007a5 5e9c461 497391b 5e9c461 497391b 5e9c461 c3007a5 5e9c461 c3007a5 5e9c461 c3007a5 5e9c461 c3007a5 497391b 5e9c461 497391b 5e9c461 497391b 5e9c461 497391b 5e9c461 0450e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
frameworks:
- Pytorch
tasks:
- text-generation
base_model:
- XGenerationLab/XiYanSQL-QwenCoder-7B-2502
base_model_relation: finetune
language:
- en
- zh
license: apache-2.0
pipeline_tag: text-generation
---
### Important Links
📖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) |
🤖[ModelScope](https://modelscope.cn/collections/XiYanSQL-Models-4483337b614241) |
🌐[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) |
🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) |
💻[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B)
## Introduction
We are excited to release the **XiYanSQL-QwenCoder-2504** version, our latest SQL generation model. This version continues to optimize upon the previous version, delivering enhanced performance.
- Our model incorporates important explorations combining **fine-tuning and GRPO training**, leveraging the post-training strategies of GRPO without a thinking process, achieving both efficiency and accuracy in SQL generation.
- It demonstrates **impressive performance** and supports **multiple dialects**, ready to use out of the box.
- Improved generalization capabilities, excelling on different dialects and **out-of-domain datasets**.
In this evaluation, we have also added **a real-world SQL benchmark (the DW test set)**, which serves as an important internal evaluation baseline. This test set includes thousands of complex queries from real scenarios in both PostgreSQL and MySQL dialects, effectively reflecting the model's performance across multiple dialects and out-of-domain data.
## Model Downloads
| **Model** | **Download Latest** |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|XiYanSQL-QwenCoder-3B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-3B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2504) |
|XiYanSQL-QwenCoder-7B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) |
|XiYanSQL-QwenCoder-14B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-14B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2504) |
|XiYanSQL-QwenCoder-32B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) |
## Performance
The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider as SQLite benchmarks in the Text-to-SQL domain, as well as DW benchmarks for PostgreSQL and MySQL dialects.
| Model name | Size | BIRD Dev@M-Schema | BIRD Dev@DDL | Spider Test@M-Schema | Spider Test@DDL | DW PostgreSQL@M-Schema | DW MySQL@M-Schema |
|------------------------------|:----:|:-----------------:|:------------:|:--------------------:|:---------------:|:----------------------:|:-----------------:|
| GPT-4o-0806 | UNK | 58.47% | 54.82% | 82.89% | 78.45% | 46.79% | 57.77% |
| GPT-4.1-0414 | UNK | 59.39% | 54.11% | 84.45% | 79.86% | 54.29% | 63.18% |
| Claude3.5-sonnet-1022 | UNK | 53.32% | 50.46% | 76.27% | 73.04% | 55.22% | 52.84% |
| Claude3.7-sonnet | UNK | 54.82% | 49.22% | 78.04% | 74.66% | 53.23% | 54.61% |
| Gemini-1.5-Pro | UNK | 61.34% | 57.89% | 85.11% | 84.00% | 52.78% | 62.78% |
| DeepSeek-V2.5-1210 | 236B | 55.74% | 55.61% | 82.08% | 80.57% | 45.74% | 52.18% |
| DeepSeek-V3 | 685B | 59.58% | 56.71% | 81.52% | 79.91% | 52.56% | 55.95% |
| DeepSeek-R1 | 685B | 58.15% | 55.61% | 80.72% | 78.85% | 60.56% | 62.00% |
| DeepSeek-R1-Distill-Qwen-32B | 32B | 50.65% | 48.31% | 78.65% | 77.33% | 37.22% | 44.72% |
| Deepseek-Coder-33B-Instruct | 33B | 47.52% | 44.72% | 72.39% | 62.0% | 31.48% | 36.17% |
| OmniSQL-32B | 32B | 60.37% | 55.87% | 85.16% | 83.19% | 38.19% | 42.34% |
| XiYanSQL-QwenCoder-3B-2502 | 3B | 53.52% | 52.54% | 83.34% | 79.10% | 34.75% | 35.62% |
| XiYanSQL-QwenCoder-3B-2504 | 3B | 55.08% | 52.09% | 84.10% | 80.57% | 36.65% | 37.63% |
| XiYanSQL-QwenCoder-7B-2502 | 7B | 59.65% | 56.32% | 84.15% | 80.01% | 39.38% | 42.10% |
| XiYanSQL-QwenCoder-7B-2504 | 7B | 62.13% | 57.43% | 85.97% | 82.48% | 42.08% | 44.67% |
| XiYanSQL-QwenCoder-14B-2502 | 14B | 63.23% | 60.10% | 85.31% | 82.84% | 38.51% | 41.62% |
| XiYanSQL-QwenCoder-14B-2504 | 14B | 65.32% | 60.17% | 86.82% | 83.75% | 40.52% | 44.60% |
| XiYanSQL-QwenCoder-32B-2412 | 32B | 67.07% | 63.04% | 88.39% | 85.46% | 45.07% | 52.84% |
| XiYanSQL-QwenCoder-32B-2504 | 32B | 67.14% | 62.26% | 89.20% | 86.17% | 53.52% | 57.74% |
## Quickstart with Transformers and vLLM
Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
### Requirements
- transformers >= 4.37.0
- vllm >= 0.7.2
### Prompt Template
```python
nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
【用户问题】
{question}
【数据库schema】
{db_schema}
【参考信息】
{evidence}
【用户问题】
{question}
```sql"""
```
### Inference with Transformers
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2504"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]
text = tokenizer.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=1024,
temperature=0.1,
top_p=0.8,
do_sample=True,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Inference with vLLM
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_path = "XGenerationLab/XiYanSQL-QwenCoder-32B-2504"
llm = LLM(model=model_path, tensor_parallel_size=8)
tokenizer = AutoTokenizer.from_pretrained(model_path)
sampling_params = SamplingParams(
n=1,
temperature=0.1,
max_tokens=1024
)
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]
text = tokenizer.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
outputs = llm.generate([text], sampling_params=sampling_params)
response = outputs[0].outputs[0].text
```
## Acknowledgments
If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community! |