XGenerationLab commited on
Commit
dd020cc
·
verified ·
1 Parent(s): feeea56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +163 -3
README.md CHANGED
@@ -1,3 +1,163 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - zh
6
+ base_model:
7
+ - XGenerationLab/XiYanSQL-QwenCoder-14B-2502
8
+ pipeline_tag: text-generation
9
+ ---
10
+
11
+ ### Important Links
12
+ 📖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) |
13
+ 🤗[HuggingFace](https://huggingface.co/collections/XGenerationLab/xiyansql-models-67c9844307b49f87436808fc) |
14
+ 🌐[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) |
15
+ 🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) |
16
+ 💻[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B)
17
+
18
+
19
+ ## Introduction
20
+ We are excited to release the **XiYanSQL-QwenCoder-2504** version, our latest SQL generation model. This version continues to optimize upon the previous version, delivering enhanced performance.
21
+ - Our model incorporates important explorations combining **fine-tuning and GRPO training**, leveraging the post-training strategies of GRPO without a thinking process, achieving both efficiency and accuracy in SQL generation.
22
+ - It demonstrates **impressive performance** and supports **multiple dialects**, ready to use out of the box.
23
+ - Improved generalization capabilities, excelling on different dialects and **out-of-domain datasets**.
24
+
25
+ In this evaluation, we have also added **a real-world SQL benchmark (the DW test set)**, which serves as an important internal evaluation baseline. This test set includes thousands of complex queries from real scenarios in both PostgreSQL and MySQL dialects, effectively reflecting the model's performance across multiple dialects and out-of-domain data.
26
+
27
+ ## Model Downloads
28
+
29
+
30
+ | **Model** | **Download Latest** |
31
+ |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
32
+ |XiYanSQL-QwenCoder-3B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-3B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2504) |
33
+ |XiYanSQL-QwenCoder-7B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) |
34
+ |XiYanSQL-QwenCoder-14B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-14B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2504) |
35
+ |XiYanSQL-QwenCoder-32B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) |
36
+
37
+
38
+
39
+ ## Performance
40
+ The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider as SQLite benchmarks in the Text-to-SQL domain, as well as DW benchmarks for PostgreSQL and MySQL dialects.
41
+
42
+ | Model name | Size | BIRD Dev@M-Schema | BIRD Dev@DDL | Spider Test@M-Schema | Spider Test@DDL | DW PostgreSQL@M-Schema | DW MySQL@M-Schema |
43
+ |------------------------------|:----:|:-----------------:|:------------:|:--------------------:|:---------------:|:----------------------:|:-----------------:|
44
+ | GPT-4o-0806 | UNK | 58.47% | 54.82% | 82.89% | 78.45% | 46.79% | 57.77% |
45
+ | GPT-4.1-0414 | UNK | 59.39% | 54.11% | 84.45% | 79.86% | 54.29% | 63.18% |
46
+ | Claude3.5-sonnet-1022 | UNK | 53.32% | 50.46% | 76.27% | 73.04% | 55.22% | 52.84% |
47
+ | Claude3.7-sonnet | UNK | 54.82% | 49.22% | 78.04% | 74.66% | 53.23% | 54.61% |
48
+ | Gemini-1.5-Pro | UNK | 61.34% | 57.89% | 85.11% | 84.00% | 52.78% | 62.78% |
49
+ | DeepSeek-V2.5-1210 | 236B | 55.74% | 55.61% | 82.08% | 80.57% | 45.74% | 52.18% |
50
+ | DeepSeek-V3 | 685B | 59.58% | 56.71% | 81.52% | 79.91% | 52.56% | 55.95% |
51
+ | DeepSeek-R1 | 685B | 58.15% | 55.61% | 80.72% | 78.85% | 60.56% | 62.00% |
52
+ | DeepSeek-R1-Distill-Qwen-32B | 32B | 50.65% | 48.31% | 78.65% | 77.33% | 37.22% | 44.72% |
53
+ | Deepseek-Coder-33B-Instruct | 33B | 47.52% | 44.72% | 72.39% | 62.0% | 31.48% | 36.17% |
54
+ | OmniSQL-32B | 32B | 60.37% | 55.87% | 85.16% | 83.19% | 38.19% | 42.34% |
55
+ | XiYanSQL-QwenCoder-3B-2502 | 3B | 53.52% | 52.54% | 83.34% | 79.10% | 34.75% | 35.62% |
56
+ | XiYanSQL-QwenCoder-3B-2504 | 3B | 55.08% | 52.09% | 84.10% | 80.57% | 36.65% | 37.63% |
57
+ | XiYanSQL-QwenCoder-7B-2502 | 7B | 59.65% | 56.32% | 84.15% | 80.01% | 39.38% | 42.10% |
58
+ | XiYanSQL-QwenCoder-7B-2504 | 7B | 62.13% | 57.43% | 85.97% | 82.48% | 42.08% | 44.67% |
59
+ | XiYanSQL-QwenCoder-14B-2502 | 14B | 63.23% | 60.10% | 85.31% | 82.84% | 38.51% | 41.62% |
60
+ | XiYanSQL-QwenCoder-14B-2504 | 14B | 65.32% | 60.17% | 86.82% | 83.75% | 40.52% | 44.60% |
61
+ | XiYanSQL-QwenCoder-32B-2412 | 32B | 67.07% | 63.04% | 88.39% | 85.46% | 45.07% | 52.84% |
62
+ | XiYanSQL-QwenCoder-32B-2504 | 32B | 67.14% | 62.26% | 89.20% | 86.17% | 53.52% | 57.74% |
63
+
64
+
65
+
66
+
67
+ ## Quickstart with Transformers and vLLM
68
+
69
+ Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
70
+ Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
71
+
72
+ ### Requirements
73
+ - transformers >= 4.37.0
74
+ - vllm >= 0.7.2
75
+
76
+
77
+ ### Prompt Template
78
+ ```python
79
+ nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
80
+ 【用户问题】
81
+ {question}
82
+
83
+ 【数据库schema】
84
+ {db_schema}
85
+
86
+ 【参考信息】
87
+ {evidence}
88
+
89
+ 【用户问题】
90
+ {question}
91
+
92
+ ```sql"""
93
+ ```
94
+
95
+
96
+ ### Inference with Transformers
97
+ ```python
98
+ import torch
99
+ from transformers import AutoModelForCausalLM, AutoTokenizer
100
+
101
+ model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2504"
102
+ model = AutoModelForCausalLM.from_pretrained(
103
+ model_name,
104
+ torch_dtype=torch.bfloat16,
105
+ device_map="auto"
106
+ )
107
+
108
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
109
+
110
+ ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
111
+ prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
112
+ message = [{'role': 'user', 'content': prompt}]
113
+
114
+ text = tokenizer.apply_chat_template(
115
+ message,
116
+ tokenize=False,
117
+ add_generation_prompt=True
118
+ )
119
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
120
+
121
+ generated_ids = model.generate(
122
+ **model_inputs,
123
+ pad_token_id=tokenizer.pad_token_id,
124
+ eos_token_id=tokenizer.eos_token_id,
125
+ max_new_tokens=1024,
126
+ temperature=0.1,
127
+ top_p=0.8,
128
+ do_sample=True,
129
+ )
130
+ generated_ids = [
131
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
132
+ ]
133
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
134
+ ```
135
+
136
+ ### Inference with vLLM
137
+ ```python
138
+ from vllm import LLM, SamplingParams
139
+ from transformers import AutoTokenizer
140
+ model_path = "XGenerationLab/XiYanSQL-QwenCoder-32B-2504"
141
+ llm = LLM(model=model_path, tensor_parallel_size=8)
142
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
143
+ sampling_params = SamplingParams(
144
+ n=1,
145
+ temperature=0.1,
146
+ max_tokens=1024
147
+ )
148
+
149
+ ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
150
+ prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
151
+ message = [{'role': 'user', 'content': prompt}]
152
+ text = tokenizer.apply_chat_template(
153
+ message,
154
+ tokenize=False,
155
+ add_generation_prompt=True
156
+ )
157
+ outputs = llm.generate([text], sampling_params=sampling_params)
158
+ response = outputs[0].outputs[0].text
159
+ ```
160
+
161
+
162
+ ## Acknowledgments
163
+ If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!