vector-dev-god commited on
Commit
69de17e
·
verified ·
1 Parent(s): 67d5a12

Added sample colab code to README

Browse files
Files changed (1) hide show
  1. README.md +16 -12
README.md CHANGED
@@ -11,7 +11,7 @@ license: mit
11
  pipeline_tag: feature-extraction
12
  ---
13
 
14
- # VectorPath SearchMap: Conversational Search Embedding Model
15
 
16
  ## Model Description
17
 
@@ -25,6 +25,10 @@ SearchMap is a specialized embedding model designed to change search by making i
25
  - Efficient 1024-dimensional embeddings (configurable up to 8192)
26
  - Specialized for product and hotel search scenarios
27
 
 
 
 
 
28
  ## Model Details
29
 
30
  - Base Model: Stella Embed 400M v5
@@ -35,17 +39,16 @@ SearchMap is a specialized embedding model designed to change search by making i
35
 
36
  ## Usage
37
 
38
- ### Using FlagEmbedding (Recommended)
39
 
40
  ```python
41
- from FlagEmbedding import FlagModel
 
 
 
42
 
43
  # Initialize the model
44
- model = FlagModel(
45
- 'vectorpath/searchmap-v1',
46
- query_instruction_for_retrieval="Generate a representation for this search query that can be used to retrieve related ecommerce products:",
47
- use_fp16=True
48
- )
49
 
50
  # Encode queries
51
  query = "A treat my dog and I can eat together"
@@ -67,13 +70,13 @@ embedding_dimension = 1024 # or your chosen dimension
67
  index = faiss.IndexFlatL2(embedding_dimension)
68
 
69
  # Add product embeddings
70
- product_embeddings = model.encode(product_descriptions)
71
  index.add(np.array(product_embeddings).astype('float32'))
72
 
73
  # Search
74
- query_embedding = model.encode(query)
75
  distances, indices = index.search(
76
- np.array([query_embedding]).astype('float32'),
77
  k=10
78
  )
79
  ```
@@ -103,7 +106,7 @@ The model excels at understanding natural language queries like:
103
  ## Training Details
104
 
105
  The model was trained using:
106
- - Supervised learning with FlagEmbedding
107
  - 100,000+ product dataset across 32 categories
108
  - AI-generated conversational search queries
109
  - Positive and negative product examples for contrast learning
@@ -135,6 +138,7 @@ If you use this model in your research, please cite:
135
 
136
  - Discord Community: [Join our Discord](https://discord.gg/9XTrys4f)
137
  - GitHub Issues: Report bugs and feature requests
 
138
 
139
  ## License
140
 
 
11
  pipeline_tag: feature-extraction
12
  ---
13
 
14
+ # VectorPath SearchMap: Conversational E-commerce Search Embedding Model
15
 
16
  ## Model Description
17
 
 
25
  - Efficient 1024-dimensional embeddings (configurable up to 8192)
26
  - Specialized for product and hotel search scenarios
27
 
28
+ ## Quick Start
29
+
30
+ Try out the model in our interactive [Colab Demo](https://colab.research.google.com/drive/1wUQlWgL5R65orhw6MFChxitabqTKIGRu?usp=sharing)!
31
+
32
  ## Model Details
33
 
34
  - Base Model: Stella Embed 400M v5
 
39
 
40
  ## Usage
41
 
42
+ ### Using Sentence Transformers
43
 
44
  ```python
45
+ # Install required packages
46
+ !pip install -U torch==2.5.1 transformers==4.44.2 sentence-transformers==2.7.0 xformers==0.0.28.post3
47
+
48
+ from sentence_transformers import SentenceTransformer
49
 
50
  # Initialize the model
51
+ model = SentenceTransformer('vectopath/SearchMap_Preview', trust_remote_code=True)
 
 
 
 
52
 
53
  # Encode queries
54
  query = "A treat my dog and I can eat together"
 
70
  index = faiss.IndexFlatL2(embedding_dimension)
71
 
72
  # Add product embeddings
73
+ product_embeddings = model.encode(product_descriptions, show_progress_bar=True)
74
  index.add(np.array(product_embeddings).astype('float32'))
75
 
76
  # Search
77
+ query_embedding = model.encode([query])
78
  distances, indices = index.search(
79
+ np.array(query_embedding).astype('float32'),
80
  k=10
81
  )
82
  ```
 
106
  ## Training Details
107
 
108
  The model was trained using:
109
+ - Supervised learning with Sentence Transformers
110
  - 100,000+ product dataset across 32 categories
111
  - AI-generated conversational search queries
112
  - Positive and negative product examples for contrast learning
 
138
 
139
  - Discord Community: [Join our Discord](https://discord.gg/9XTrys4f)
140
  - GitHub Issues: Report bugs and feature requests
141
+ - Interactive Demo: [Try it on Colab](https://colab.research.google.com/drive/1wUQlWgL5R65orhw6MFChxitabqTKIGRu?usp=sharing)
142
 
143
  ## License
144