File size: 27,884 Bytes
f445293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63cb50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dade80f
 
 
 
 
 
 
 
 
 
 
 
 
 
af9ffc2
f63cb50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30bfd8
f63cb50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad05bf8
 
f63cb50
9bf7098
f63cb50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f445293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75b8440
af9ffc2
f445293
f63cb50
 
 
 
f445293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9ffc2
f445293
af9ffc2
 
f445293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63cb50
f445293
f63cb50
f445293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
from functools import partial

import numpy as np
from tqdm import tqdm
import scipy.stats as stats
import math
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint

from timm.models.vision_transformer import Block

from .diffloss import DiffLoss


def mask_by_order(mask_len, order, bsz, seq_len):
    masking = torch.zeros(bsz, seq_len).cuda()
    masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()], src=torch.ones(bsz, seq_len).cuda()).bool()
    return masking


class MARBert(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone
    """
    def __init__(self, img_size=256, vae_stride=16, patch_size=1,
                 encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
                 decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
                 mlp_ratio=4., norm_layer=nn.LayerNorm,
                 vae_embed_dim=16,
                 mask_ratio_min=0.7,
                 label_drop_prob=0.1,
                 class_num=1000,
                 attn_dropout=0.1,
                 proj_dropout=0.1,
                 buffer_size=64,
                 diffloss_d=3,
                 diffloss_w=1024,
                 num_sampling_steps='100',
                 diffusion_batch_mul=4,
                 grad_checkpointing=False,
                 ):
        super().__init__()

        # --------------------------------------------------------------------------
        # VAE and patchify specifics
        self.vae_embed_dim = vae_embed_dim

        self.img_size = img_size
        self.vae_stride = vae_stride
        self.patch_size = patch_size
        self.seq_h = self.seq_w = img_size // vae_stride // patch_size
        self.seq_len = self.seq_h * self.seq_w
        self.token_embed_dim = vae_embed_dim * patch_size**2
        self.grad_checkpointing = grad_checkpointing

        # --------------------------------------------------------------------------
        # Class Embedding
        self.num_classes = class_num
        self.class_emb = nn.Embedding(1000, encoder_embed_dim)
        self.label_drop_prob = label_drop_prob
        # Fake class embedding for CFG's unconditional generation
        self.fake_latent = nn.Parameter(torch.zeros(1, encoder_embed_dim))

        # --------------------------------------------------------------------------
        # MAR variant masking ratio, a left-half truncated Gaussian centered at 100% masking ratio with std 0.25
        self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - 1.0) / 0.25, 0, loc=1.0, scale=0.25)

        # --------------------------------------------------------------------------
        # MAR encoder specifics
        self.z_proj = nn.Linear(self.token_embed_dim, encoder_embed_dim, bias=True)
        self.z_proj_ln = nn.LayerNorm(encoder_embed_dim, eps=1e-6)
        self.buffer_size = buffer_size
        self.encoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, encoder_embed_dim))

        self.encoder_blocks = nn.ModuleList([
            Block(encoder_embed_dim, encoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
                  proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(encoder_depth)])
        self.encoder_norm = norm_layer(encoder_embed_dim)

        # --------------------------------------------------------------------------
        # MAR decoder specifics
        self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
        self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
        self.decoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, decoder_embed_dim))

        self.decoder_blocks = nn.ModuleList([
            Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
                  proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(decoder_depth)])

        self.decoder_norm = norm_layer(decoder_embed_dim)
        self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len, decoder_embed_dim))

        self.initialize_weights()

        # --------------------------------------------------------------------------
        # Diffusion Loss
        self.diffloss = DiffLoss(
            target_channels=self.token_embed_dim,
            z_channels=decoder_embed_dim,
            width=diffloss_w,
            depth=diffloss_d,
            num_sampling_steps=num_sampling_steps,
            grad_checkpointing=grad_checkpointing
        )
        self.diffusion_batch_mul = diffusion_batch_mul
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")
        print("test")

    def initialize_weights(self):
        # parameters
        torch.nn.init.normal_(self.class_emb.weight, std=.02)
        torch.nn.init.normal_(self.fake_latent, std=.02)
        torch.nn.init.normal_(self.mask_token, std=.02)
        torch.nn.init.normal_(self.encoder_pos_embed_learned, std=.02)
        torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
        torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02)

        # initialize nn.Linear and nn.LayerNorm
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
            if m.weight is not None:
                nn.init.constant_(m.weight, 1.0)

    def patchify(self, x):
        bsz, c, h, w = x.shape
        p = self.patch_size
        h_, w_ = h // p, w // p

        x = x.reshape(bsz, c, h_, p, w_, p)
        x = torch.einsum('nchpwq->nhwcpq', x)
        x = x.reshape(bsz, h_ * w_, c * p ** 2)
        return x  # [n, l, d]

    def unpatchify(self, x):
        bsz = x.shape[0]
        p = self.patch_size
        c = self.vae_embed_dim
        h_, w_ = self.seq_h, self.seq_w

        x = x.reshape(bsz, h_, w_, c, p, p)
        x = torch.einsum('nhwcpq->nchpwq', x)
        x = x.reshape(bsz, c, h_ * p, w_ * p)
        return x  # [n, c, h, w]

    def sample_orders(self, bsz):
        # generate a batch of random generation orders
        orders = []
        for _ in range(bsz):
            order = np.array(list(range(self.seq_len)))
            np.random.shuffle(order)
            orders.append(order)
        orders = torch.Tensor(np.array(orders)).cuda().long()
        return orders

    def random_masking(self, x, orders):
        # generate token mask
        bsz, seq_len, embed_dim = x.shape
        mask_rate = self.mask_ratio_generator.rvs(1)[0]
        num_masked_tokens = int(np.ceil(seq_len * mask_rate))
        mask = torch.zeros(bsz, seq_len, device=x.device)
        mask = torch.scatter(mask, dim=-1, index=orders[:, :num_masked_tokens],
                             src=torch.ones(bsz, seq_len, device=x.device))
        return mask

    def forward_mae_encoder(self, x, mask, class_embedding):
        x = self.z_proj(x)
        bsz, seq_len, embed_dim = x.shape

        # concat buffer
        x = torch.cat([torch.zeros(bsz, self.buffer_size, embed_dim, device=x.device), x], dim=1)
        mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)

        # random drop class embedding during training
        if self.training:
            drop_latent_mask = torch.rand(bsz) < self.label_drop_prob
            drop_latent_mask = drop_latent_mask.unsqueeze(-1).cuda().to(x.dtype)
            class_embedding = drop_latent_mask * self.fake_latent + (1 - drop_latent_mask) * class_embedding

        x[:, :self.buffer_size] = class_embedding.unsqueeze(1)

        # encoder position embedding
        x = x + self.encoder_pos_embed_learned
        x = self.z_proj_ln(x)

        # dropping
        x = x[(1-mask_with_buffer).nonzero(as_tuple=True)].reshape(bsz, -1, embed_dim)

        # apply Transformer blocks
        if self.grad_checkpointing and not torch.jit.is_scripting():
            for block in self.encoder_blocks:
                x = checkpoint(block, x)
        else:
            for block in self.encoder_blocks:
                x = block(x)
        x = self.encoder_norm(x)

        return x

    def forward_mae_decoder(self, x, mask):

        x = self.decoder_embed(x)
        mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)

        # pad mask tokens
        mask_tokens = self.mask_token.repeat(mask_with_buffer.shape[0], mask_with_buffer.shape[1], 1).to(x.dtype)
        x_after_pad = mask_tokens.clone()
        x_after_pad[(1 - mask_with_buffer).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])

        # decoder position embedding
        x = x_after_pad + self.decoder_pos_embed_learned

        # apply Transformer blocks
        if self.grad_checkpointing and not torch.jit.is_scripting():
            for block in self.decoder_blocks:
                x = checkpoint(block, x)
        else:
            for block in self.decoder_blocks:
                x = block(x)
        x = self.decoder_norm(x)

        x = x[:, self.buffer_size:]
        x = x + self.diffusion_pos_embed_learned
        return x

    def forward_loss(self, z, target, mask):
        bsz, seq_len, _ = target.shape
        target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
        z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
        mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
        loss = self.diffloss(z=z, target=target, mask=mask)
        return loss

    def forward(self, imgs, labels):

        # class embed
        class_embedding = self.class_emb(labels)

        # patchify and mask (drop) tokens
        x = self.patchify(imgs)
        gt_latents = x.clone().detach()
        orders = self.sample_orders(bsz=x.size(0))
        mask = self.random_masking(x, orders)

        # mae encoder
        x = self.forward_mae_encoder(x, mask, class_embedding)

        # mae decoder
        z = self.forward_mae_decoder(x, mask)

        # diffloss
        loss = self.forward_loss(z=z, target=gt_latents, mask=mask)

        return loss

    def sample_tokens(self, bsz, num_iter=64, cfg=1.0, cfg_schedule="linear", labels=None, temperature=1.0, progress=False):

        # init and sample generation orders
        mask = torch.ones(bsz, self.seq_len).cuda()
        tokens = torch.zeros(bsz, self.seq_len, self.token_embed_dim).cuda()
        orders = self.sample_orders(bsz)

        indices = list(range(num_iter))
        if progress:
            indices = tqdm(indices)
        # generate latents
        for step in indices:
            cur_tokens = tokens.clone()
            print("test")
            # class embedding and CFG
            if labels is not None:
                class_embedding = self.class_emb(labels)
            else:
                class_embedding = self.fake_latent.repeat(bsz, 1)
            if not cfg == 1.0:
                tokens = torch.cat([tokens, tokens], dim=0)
                class_embedding = torch.cat([class_embedding, self.fake_latent.repeat(bsz, 1)], dim=0)
                mask = torch.cat([mask, mask], dim=0)

            # mae encoder
            x = self.forward_mae_encoder(tokens, mask, class_embedding)

            # mae decoder
            z = self.forward_mae_decoder(x, mask)

            # mask ratio for the next round, following MaskGIT and MAGE.
            mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter)
            mask_len = torch.Tensor([np.floor(self.seq_len * mask_ratio)]).cuda()

            # masks out at least one for the next iteration
            mask_len = torch.maximum(torch.Tensor([1]).cuda(),
                                     torch.minimum(torch.sum(mask, dim=-1, keepdims=True) - 1, mask_len))

            # get masking for next iteration and locations to be predicted in this iteration
            mask_next = mask_by_order(mask_len[0], orders, bsz, self.seq_len)
            if step >= num_iter - 1:
                mask_to_pred = mask[:bsz].bool()
            else:
                mask_to_pred = torch.logical_xor(mask[:bsz].bool(), mask_next.bool())
            mask = mask_next
            if not cfg == 1.0:
                mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)

            # sample token latents for this step
            print(z.shape)
            print("-----------")
            z = z[mask_to_pred.nonzero(as_tuple=True)]
            print(z.shape)
            # cfg schedule follow Muse
            if cfg_schedule == "linear":
                cfg_iter = 1 + (cfg - 1) * (self.seq_len - mask_len[0]) / self.seq_len
            elif cfg_schedule == "constant":
                cfg_iter = cfg
            else:
                raise NotImplementedError
            sampled_token_latent = self.diffloss.sample(z, temperature, cfg_iter)
            if not cfg == 1.0:
                sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0)  # Remove null class samples
                mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)

            cur_tokens[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
            tokens = cur_tokens.clone()

        # unpatchify
        tokens = self.unpatchify(tokens)
        return tokens

class MAR(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone
    """
    def __init__(self, img_size=256, vae_stride=16, patch_size=1,
                 encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
                 decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
                 mlp_ratio=4., norm_layer=nn.LayerNorm,
                 vae_embed_dim=16,
                 mask_ratio_min=0.7,
                 label_drop_prob=0.1,
                 class_num=1000,
                 attn_dropout=0.1,
                 proj_dropout=0.1,
                 buffer_size=64,
                 diffloss_d=3,
                 diffloss_w=1024,
                 num_sampling_steps='100',
                 diffusion_batch_mul=4,
                 grad_checkpointing=False,
                 ):
        super().__init__()

        # --------------------------------------------------------------------------
        # VAE and patchify specifics
        self.vae_embed_dim = vae_embed_dim

        self.img_size = img_size
        self.vae_stride = vae_stride
        self.patch_size = patch_size
        self.seq_h = self.seq_w = img_size // vae_stride // patch_size
        self.seq_len = self.seq_h * self.seq_w
        self.token_embed_dim = vae_embed_dim * patch_size**2
        self.grad_checkpointing = grad_checkpointing

        # --------------------------------------------------------------------------
        # Class Embedding
        self.num_classes = class_num
        self.class_emb = nn.Embedding(1000, encoder_embed_dim)
        self.label_drop_prob = label_drop_prob
        # Fake class embedding for CFG's unconditional generation
        self.fake_latent = nn.Parameter(torch.zeros(1, encoder_embed_dim))

        # --------------------------------------------------------------------------
        # MAR variant masking ratio, a left-half truncated Gaussian centered at 100% masking ratio with std 0.25
        self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - 1.0) / 0.25, 0, loc=1.0, scale=0.25)

        # --------------------------------------------------------------------------
        # MAR encoder specifics
        self.z_proj = nn.Linear(self.token_embed_dim, encoder_embed_dim, bias=True)
        self.z_proj_ln = nn.LayerNorm(encoder_embed_dim, eps=1e-6)
        self.buffer_size = buffer_size
        self.encoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, encoder_embed_dim))

        self.encoder_blocks = nn.ModuleList([
            Block(encoder_embed_dim, encoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
                  proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(encoder_depth)])
        self.encoder_norm = norm_layer(encoder_embed_dim)

        # --------------------------------------------------------------------------
        # MAR decoder specifics
        self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
        self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
        self.decoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, decoder_embed_dim))

        self.decoder_blocks = nn.ModuleList([
            Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
                  proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(decoder_depth)])

        self.decoder_norm = norm_layer(decoder_embed_dim)
        self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len, decoder_embed_dim))

        self.initialize_weights()

        # --------------------------------------------------------------------------
        # Diffusion Loss
        self.diffloss = DiffLoss(
            target_channels=self.token_embed_dim,
            z_channels=decoder_embed_dim,
            width=diffloss_w,
            depth=diffloss_d,
            num_sampling_steps=num_sampling_steps,
            grad_checkpointing=grad_checkpointing
        )
        self.diffusion_batch_mul = diffusion_batch_mul

    def initialize_weights(self):
        # parameters
        torch.nn.init.normal_(self.class_emb.weight, std=.02)
        torch.nn.init.normal_(self.fake_latent, std=.02)
        torch.nn.init.normal_(self.mask_token, std=.02)
        torch.nn.init.normal_(self.encoder_pos_embed_learned, std=.02)
        torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
        torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02)

        # initialize nn.Linear and nn.LayerNorm
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
            if m.weight is not None:
                nn.init.constant_(m.weight, 1.0)

    def patchify(self, x):
        bsz, c, h, w = x.shape
        p = self.patch_size
        h_, w_ = h // p, w // p

        x = x.reshape(bsz, c, h_, p, w_, p)
        x = torch.einsum('nchpwq->nhwcpq', x)
        x = x.reshape(bsz, h_ * w_, c * p ** 2)
        return x  # [n, l, d]

    def unpatchify(self, x):
        bsz = x.shape[0]
        p = self.patch_size
        c = self.vae_embed_dim
        h_, w_ = self.seq_h, self.seq_w

        x = x.reshape(bsz, h_, w_, c, p, p)
        x = torch.einsum('nhwcpq->nchpwq', x)
        x = x.reshape(bsz, c, h_ * p, w_ * p)
        return x  # [n, c, h, w]

    def sample_orders(self, bsz):
        # generate a batch of random generation orders
        orders = []
        for _ in range(bsz):
            order = np.array(list(range(self.seq_len)))
            np.random.shuffle(order)
            orders.append(order)
        orders = torch.Tensor(np.array(orders)).cuda().long()
        return orders

    def random_masking(self, x, orders):
        # generate token mask
        bsz, seq_len, embed_dim = x.shape
        mask_rate = self.mask_ratio_generator.rvs(1)[0]
        num_masked_tokens = int(np.ceil(seq_len * mask_rate))
        mask = torch.zeros(bsz, seq_len, device=x.device)
        mask = torch.scatter(mask, dim=-1, index=orders[:, :num_masked_tokens],
                             src=torch.ones(bsz, seq_len, device=x.device))
        return mask

    def forward_mae_encoder(self, x, mask, class_embedding):
        x = self.z_proj(x)
        bsz, seq_len, embed_dim = x.shape

        # concat buffer
        x = torch.cat([torch.zeros(bsz, self.buffer_size, embed_dim, device=x.device), x], dim=1)
        mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)

        # random drop class embedding during training
        if self.training:
            drop_latent_mask = torch.rand(bsz) < self.label_drop_prob
            drop_latent_mask = drop_latent_mask.unsqueeze(-1).cuda().to(x.dtype)
            class_embedding = drop_latent_mask * self.fake_latent + (1 - drop_latent_mask) * class_embedding

        x[:, :self.buffer_size] = class_embedding.unsqueeze(1)

        # encoder position embedding
        x = x + self.encoder_pos_embed_learned
        x = self.z_proj_ln(x)

        # dropping
        x = x[(1-mask_with_buffer).nonzero(as_tuple=True)].reshape(bsz, -1, embed_dim)

        # apply Transformer blocks
        if self.grad_checkpointing and not torch.jit.is_scripting():
            for block in self.encoder_blocks:
                x = checkpoint(block, x)
        else:
            for block in self.encoder_blocks:
                x = block(x)
        x = self.encoder_norm(x)

        return x

    def forward_mae_decoder(self, x, mask):

        x = self.decoder_embed(x)
        mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)

        # pad mask tokens
        mask_tokens = self.mask_token.repeat(mask_with_buffer.shape[0], mask_with_buffer.shape[1], 1).to(x.dtype)
        x_after_pad = mask_tokens.clone()
        x_after_pad[(1 - mask_with_buffer).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])

        # decoder position embedding
        x = x_after_pad + self.decoder_pos_embed_learned

        # apply Transformer blocks
        if self.grad_checkpointing and not torch.jit.is_scripting():
            for block in self.decoder_blocks:
                x = checkpoint(block, x)
        else:
            for block in self.decoder_blocks:
                x = block(x)
        x = self.decoder_norm(x)

        x = x[:, self.buffer_size:]
        x = x + self.diffusion_pos_embed_learned
        return x

    def forward_loss(self, z, target, mask):
        bsz, seq_len, _ = target.shape
        target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
        z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
        mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
        loss = self.diffloss(z=z, target=target, mask=mask)
        return loss

    def forward(self, imgs, labels):

        # class embed
        class_embedding = self.class_emb(labels)

        # patchify and mask (drop) tokens
        x = self.patchify(imgs)
        gt_latents = x.clone().detach()
        orders = self.sample_orders(bsz=x.size(0))
        mask = self.random_masking(x, orders)

        # mae encoder
        x = self.forward_mae_encoder(x, mask, class_embedding)

        # mae decoder
        z = self.forward_mae_decoder(x, mask)

        # diffloss
        loss = self.forward_loss(z=z, target=gt_latents, mask=mask)

        return loss

    def sample_tokens(self, bsz, num_iter=64, cfg=1.0, cfg_schedule="linear", labels=None, temperature=1.0, progress=False):

        # init and sample generation orders
        mask = torch.ones(bsz, self.seq_len).cuda()
        tokens = torch.zeros(bsz, self.seq_len, self.token_embed_dim).cuda()
        orders = self.sample_orders(bsz)

        indices = list(range(num_iter))
        if progress:
            indices = tqdm(indices)
        # generate latents
        for step in indices:
            cur_tokens = tokens.clone()
            print(cur_tokens.shape)
            print("+++++++++++++++++++++++")
            # class embedding and CFG
            if labels is not None:
                class_embedding = self.class_emb(labels)
            else:
                class_embedding = self.fake_latent.repeat(bsz, 1)
            if not cfg == 1.0:
                tokens = torch.cat([tokens, tokens], dim=0)
                class_embedding = torch.cat([class_embedding, self.fake_latent.repeat(bsz, 1)], dim=0)
                mask = torch.cat([mask, mask], dim=0)

            # mae encoder
            x = self.forward_mae_encoder(tokens, mask, class_embedding)

            # mae decoder
            z = self.forward_mae_decoder(x, mask)

            # mask ratio for the next round, following MaskGIT and MAGE.
            mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter)
            mask_len = torch.Tensor([np.floor(self.seq_len * mask_ratio)]).cuda()

            # masks out at least one for the next iteration
            mask_len = torch.maximum(torch.Tensor([1]).cuda(),
                                     torch.minimum(torch.sum(mask, dim=-1, keepdims=True) - 1, mask_len))

            # get masking for next iteration and locations to be predicted in this iteration
            mask_next = mask_by_order(mask_len[0], orders, bsz, self.seq_len)
            if step >= num_iter - 1:
                mask_to_pred = mask[:bsz].bool()
            else:
                mask_to_pred = torch.logical_xor(mask[:bsz].bool(), mask_next.bool())
            mask = mask_next
            if not cfg == 1.0:
                mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)

            # sample token latents for this step
            print(z.shape)
            z = z[mask_to_pred.nonzero(as_tuple=True)]
            print(z.shape)
            print("==============================")
            # cfg schedule follow Muse
            if cfg_schedule == "linear":
                cfg_iter = 1 + (cfg - 1) * (self.seq_len - mask_len[0]) / self.seq_len
            elif cfg_schedule == "constant":
                cfg_iter = cfg
            else:
                raise NotImplementedError
            sampled_token_latent = self.diffloss.sample(z, temperature, cfg_iter)
            if not cfg == 1.0:
                sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0)  # Remove null class samples
                mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)

            cur_tokens[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
            tokens = cur_tokens.clone()

        # unpatchify
        print(tokens.shape)
        tokens = self.unpatchify(tokens)
        print(tokens.shape)
        return tokens


def mar_base(**kwargs):
    model = MAR(
        encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12,
        decoder_embed_dim=768, decoder_depth=12, decoder_num_heads=12,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model


def mar_large(**kwargs):
    model = MAR(
        encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
        decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model


def mar_huge(**kwargs):
    model = MAR(
        encoder_embed_dim=1280, encoder_depth=20, encoder_num_heads=16,
        decoder_embed_dim=1280, decoder_depth=20, decoder_num_heads=16,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model