TwT-6's picture
Upload 2667 files
256a159 verified
### Copy from https://github.com/iqiyi/FASPell ###
"""
Requirements:
- java (required only if tree edit distance is used)
- numpy
"""
import numpy as np
from subprocess import Popen, PIPE, STDOUT
import os
import argparse
IDCS = {'\u2ff0': 2, # 12 ideographic description characters and their capacity of son nodes
'\u2ff1': 2,
'\u2ff2': 3,
'\u2ff3': 3,
'\u2ff4': 2,
'\u2ff5': 2,
'\u2ff6': 2,
'\u2ff7': 2,
'\u2ff8': 2,
'\u2ff9': 2,
'\u2ffa': 2,
'\u2ffb': 2, }
PINYIN = {'ā': ['a', 1], 'á': ['a', 2], 'ǎ': ['a', 3], 'à': ['a', 4],
'ē': ['e', 1], 'é': ['e', 2], 'ě': ['e', 3], 'è': ['e', 4],
'ī': ['i', 1], 'í': ['i', 2], 'ǐ': ['i', 3], 'ì': ['i', 4],
'ō': ['o', 1], 'ó': ['o', 2], 'ǒ': ['o', 3], 'ò': ['o', 4],
'ū': ['u', 1], 'ú': ['u', 2], 'ǔ': ['u', 3], 'ù': ['u', 4],
'ǖ': ['ü', 1], 'ǘ': ['ü', 2], 'ǚ': ['ü', 3], 'ǜ': ['ü', 4],
'': ['m', 2], 'ń': ['n', 2], 'ň': ['n', 3], 'ǹ': ['n', 4],
}
# APTED_JAR_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'apted.jar')
APTED_JAR_PATH = 'apted.jar'
def tree_edit_distance(tree_a, tree_b):
"""
We use APTED algorithm proposed by M. Pawlik and N. Augsten
github link: https://github.com/DatabaseGroup/apted
"""
p = Popen(['java', '-jar', APTED_JAR_PATH, '-t', tree_a, tree_b], stdout=PIPE, stderr=STDOUT)
res = [line for line in p.stdout]
res = res[0]
res = res.strip()
res = float(res)
return res
def edit_distance(string_a, string_b, name='Levenshtein'):
"""
>>> edit_distance('abcde', 'avbcude')
2
>>> edit_distance(['至', '刂'], ['亻', '至', '刂'])
1
>>> edit_distance('fang', 'qwe')
4
>>> edit_distance('fang', 'hen')
3
"""
size_x = len(string_a) + 1
size_y = len(string_b) + 1
matrix = np.zeros((size_x, size_y), dtype=int)
for x in range(size_x):
matrix[x, 0] = x
for y in range(size_y):
matrix[0, y] = y
for x in range(1, size_x):
for y in range(1, size_y):
if string_a[x - 1] == string_b[y - 1]:
matrix[x, y] = min(
matrix[x - 1, y] + 1,
matrix[x - 1, y - 1],
matrix[x, y - 1] + 1
)
else:
if name == 'Levenshtein':
matrix[x, y] = min(
matrix[x - 1, y] + 1,
matrix[x - 1, y - 1] + 1,
matrix[x, y - 1] + 1
)
else: # Canonical
matrix[x, y] = min(
matrix[x - 1, y] + 1,
matrix[x - 1, y - 1] + 2,
matrix[x, y - 1] + 1
)
return matrix[size_x - 1, size_y - 1]
class CharFuncs(object):
def __init__(self, char_meta_fname):
self.data = self.load_char_meta(char_meta_fname)
self.char_dict = dict([(c, 0) for c in self.data])
self.safe = {'\u2ff0': 'A',
# to eliminate the bug that, in Windows CMD, char ⿻ and ⿵ are encoded to be the same.
'\u2ff1': 'B',
'\u2ff2': 'C',
'\u2ff3': 'D',
'\u2ff4': 'E',
'\u2ff5': 'F',
'\u2ff6': 'G',
'\u2ff7': 'H',
'\u2ff8': 'I',
'\u2ff9': 'J',
'\u2ffa': 'L',
'\u2ffb': 'M', }
@staticmethod
def load_char_meta(fname):
data = {}
f = open(fname, 'r', encoding='utf-8')
for line in f:
items = line.strip().split('\t')
code_point = items[0]
char = items[1]
pronunciation = items[2]
decompositions = items[3:]
assert char not in data
data[char] = {"code_point": code_point, "pronunciation": pronunciation, "decompositions": decompositions}
return data
def shape_distance(self, char1, char2, safe=True, as_tree=False):
"""
>>> c = CharFuncs('data/char_meta.txt')
>>> c.shape_distance('田', '由')
1
>>> c.shape_distance('牛', '午')
1
"""
assert char1 in self.data
assert char2 in self.data
def safe_encode(decomp):
tree = ''
for c in string_to_tree(decomp):
if c not in self.safe:
tree += c
else:
tree += self.safe[c]
return tree
def safe_encode_string(decomp):
tree = ''
for c in decomp:
if c not in self.safe:
tree += c
else:
tree += self.safe[c]
return tree
decomps_1 = self.data[char1]["decompositions"]
decomps_2 = self.data[char2]["decompositions"]
distance = 1e5
if as_tree:
for decomp1 in decomps_1:
for decomp2 in decomps_2:
if not safe:
ted = tree_edit_distance(string_to_tree(decomp1), string_to_tree(decomp2))
else:
ted = tree_edit_distance(safe_encode(decomp1), safe_encode(decomp2))
distance = min(distance, ted)
else:
for decomp1 in decomps_1:
for decomp2 in decomps_2:
if not safe:
ed = edit_distance(decomp1, decomp2)
else:
ed = edit_distance(safe_encode_string(decomp1), safe_encode_string(decomp2))
distance = min(distance, ed)
return distance
def pronunciation_distance(self, char1, char2):
"""
>>> c = CharFuncs('data/char_meta.txt')
>>> c.pronunciation_distance('田', '由')
3.4
>>> c.pronunciation_distance('牛', '午')
2.6
"""
assert char1 in self.data
assert char2 in self.data
pronunciations1 = self.data[char1]["pronunciation"]
pronunciations2 = self.data[char2]["pronunciation"]
if pronunciations1[0] == 'null' or pronunciations2 == 'null':
return 0.0
else:
pronunciations1 = pronunciations1.split(';') # separate by lan
pronunciations2 = pronunciations2.split(';') # separate by lan
distance = 0.0
count = 0
for pron_lan1, pron_lan2 in zip(pronunciations1, pronunciations2):
if (pron_lan1 == 'null') or (pron_lan2 == 'null'):
pass
else:
distance_lan = 1e5
for p1 in pron_lan1.split(','):
for p2 in pron_lan2.split(','):
distance_lan = min(distance_lan, edit_distance(p1, p2))
distance += distance_lan
count += 1
return distance / count
@staticmethod
def load_dict(fname):
data = {}
f = open(fname, 'r', encoding='utf-8')
for line in f:
char, freq = line.strip().split('\t')
assert char not in data
data[char] = freq
return data
def similarity(self, char1, char2, weights=(0.8, 0.2, 0.0), as_tree=False):
"""
this function returns weighted similarity. When used in FASPell, each weight can only be 0 or 1.
"""
# assert char1 in self.char_dict
# assert char2 in self.char_dict
shape_w, sound_w, freq_w = weights
if char1 in self.char_dict and char2 in self.char_dict:
shape_sim = self.shape_similarity(char1, char2, as_tree=as_tree)
sound_sim = self.pronunciation_similarity(char1, char2)
freq_sim = 1.0 - self.char_dict[char2] / len(self.char_dict)
return shape_sim * shape_w + sound_sim * sound_w + freq_sim * freq_w
else:
return 0.0
def shape_similarity(self, char1, char2, safe=True, as_tree=False):
"""
>>> c = CharFuncs('data/char_meta.txt')
>>> c.shape_similarity('牛', '午')
0.8571428571428572
>>> c.shape_similarity('田', '由')
0.8888888888888888
"""
assert char1 in self.data
assert char2 in self.data
def safe_encode(decomp):
tree = ''
for c in string_to_tree(decomp):
if c not in self.safe:
tree += c
else:
tree += self.safe[c]
return tree
def safe_encode_string(decomp):
tree = ''
for c in decomp:
if c not in self.safe:
tree += c
else:
tree += self.safe[c]
return tree
decomps_1 = self.data[char1]["decompositions"]
decomps_2 = self.data[char2]["decompositions"]
similarity = 0.0
if as_tree:
for decomp1 in decomps_1:
for decomp2 in decomps_2:
if not safe:
ted = tree_edit_distance(string_to_tree(decomp1), string_to_tree(decomp2))
else:
ted = tree_edit_distance(safe_encode(decomp1), safe_encode(decomp2))
normalized_ted = 2 * ted / (len(decomp1) + len(decomp2) + ted)
similarity = max(similarity, 1 - normalized_ted)
else:
for decomp1 in decomps_1:
for decomp2 in decomps_2:
if not safe:
ed = edit_distance(decomp1, decomp2)
else:
ed = edit_distance(safe_encode_string(decomp1), safe_encode_string(decomp2))
normalized_ed = ed / max(len(decomp1), len(decomp2))
similarity = max(similarity, 1 - normalized_ed)
return similarity
def pronunciation_similarity(self, char1, char2):
"""
>>> c = CharFuncs('data/char_meta.txt')
>>> c.pronunciation_similarity('牛', '午')
0.27999999999999997
>>> c.pronunciation_similarity('由', '田')
0.09
"""
assert char1 in self.data
assert char2 in self.data
pronunciations1 = self.data[char1]["pronunciation"]
pronunciations2 = self.data[char2]["pronunciation"]
if pronunciations1[0] == 'null' or pronunciations2 == 'null':
return 0.0
else:
pronunciations1 = pronunciations1.split(';') # separate by lan
pronunciations2 = pronunciations2.split(';') # separate by lan
similarity = 0.0
count = 0
for pron_lan1, pron_lan2 in zip(pronunciations1, pronunciations2):
if (pron_lan1 == 'null') or (pron_lan2 == 'null'):
pass
else:
similarity_lan = 0.0
for p1 in pron_lan1.split(','):
for p2 in pron_lan2.split(','):
tmp_sim = 1 - edit_distance(p1, p2) / max(len(p1), len(p2))
similarity_lan = max(similarity_lan, tmp_sim)
similarity += similarity_lan
count += 1
return similarity / count if count else 0
def string_to_tree(string):
"""
This function converts ids string to a string that can be used as a tree input to APTED.
Any Error raised by this function implies that the input string is invalid.
>>> string_to_tree('⿱⿱⿰丿㇏⿰丿㇏⿱⿰丿㇏⿰丿㇏') # 炎
'{⿱{⿱{⿰{丿}{㇏}}{⿰{丿}{㇏}}}{⿱{⿰{丿}{㇏}}{⿰{丿}{㇏}}}}'
>>> string_to_tree('⿱⿰丿㇏⿱一⿱⿻一丨一') # 全
'{⿱{⿰{丿}{㇏}}{⿱{一}{⿱{⿻{一}{丨}}{一}}}}'
>>> string_to_tree('⿱⿰丿㇏⿻⿱一⿱⿻一丨一丷') # 金
'{⿱{⿰{丿}{㇏}}{⿻{⿱{一}{⿱{⿻{一}{丨}}{一}}}{丷}}}'
>>> string_to_tree('⿻⿻⿻一丨一⿴⿱⿰丨𠃌一一') # 車
'{⿻{⿻{⿻{一}{丨}}{一}}{⿴{⿱{⿰{丨}{𠃌}}{一}}{一}}}'
>>> string_to_tree('⿻⿻⿻一丨⿰丿㇏⿴⿱⿰丨𠃌一一') # 東
'{⿻{⿻{⿻{一}{丨}}{⿰{丿}{㇏}}}{⿴{⿱{⿰{丨}{𠃌}}{一}}{一}}}'
>>> string_to_tree('丿') # 丿
'{丿}'
>>> string_to_tree('⿻') # ⿻
'{⿻}'
"""
if string[0] in IDCS and len(string) != 1:
bracket_stack = []
tree = []
def add_brackets(num):
if num == 2:
bracket_stack.extend(['}', '{', '}'])
else:
bracket_stack.extend(['}', '{', '}', '{', '}'])
tree.append('{')
global_just_put = '{'
for c in string:
tree.append(c)
if c in IDCS:
assert global_just_put != '}'
add_brackets(IDCS[c])
global_just_put = '{'
else:
just_put = ''
while just_put != '{' and bracket_stack:
just_put = bracket_stack.pop(-1)
tree.append(just_put)
global_just_put = just_put
res = ''.join(tree)
assert res[-1] == '}'
else:
assert len(string) == 1 or string == 'null'
res = string[0]
return '{' + res + '}'
def pinyin_map(standard_pinyin):
"""
>>> pinyin_map('xuě')
'xue3'
>>> pinyin_map('xue')
'xue'
>>> pinyin_map('lǜ')
'lü4'
>>> pinyin_map('fá')
'fa2'
"""
tone = ''
pinyin = ''
assert ' ' not in standard_pinyin
for c in standard_pinyin:
if c in PINYIN:
pinyin += PINYIN[c][0]
assert tone == ''
tone = str(PINYIN[c][1])
else:
pinyin += c
pinyin += tone
return pinyin
def parse_args():
usage = '\n1. You can compute character similarity by:\n' \
'python char_sim.py 午 牛 年 千\n' \
'\n' \
'2. You can use ted in computing character similarity by:\n' \
'python char_sim.py 午 牛 年 千 -t\n' \
'\n'
parser = argparse.ArgumentParser(
description='A script to compute Chinese character (Kanji) similarity', usage=usage)
parser.add_argument('multiargs', nargs='*', type=str, default=None,
help='Chinese characters in question')
parser.add_argument('--ted', '-t', action="store_true", default=False,
help='True=to use tree edit distence (TED)'
'False=to use string edit distance')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
c = CharFuncs('data/char_meta.txt')
if not args.ted:
for i, c1 in enumerate(args.multiargs):
for c2 in args.multiargs[i:]:
if c1 != c2:
print(f'For character pair ({c1}, {c2}):')
print(f' v-sim = {c.shape_similarity(c1, c2)}')
print(f' p-sim = {c.pronunciation_similarity(c1, c2)}\n')
else:
for i, c1 in enumerate(args.multiargs):
for c2 in args.multiargs[i:]:
if c1 != c2:
print(f'For character pair ({c1}, {c2}):')
print(f' v-sim = {c.shape_similarity(c1, c2, as_tree=True)}')
print(f' p-sim = {c.pronunciation_similarity(c1, c2)}\n')