api-demo
/
opencompass-my-api
/build
/lib
/opencompass
/summarizers
/subjective
/information_retrival.py
# flake8: noqa: E501 | |
import csv | |
import os | |
import os.path as osp | |
import re | |
from collections import defaultdict | |
from datetime import datetime | |
import numpy as np | |
from mmengine import ConfigDict | |
try: | |
from prettytable import from_csv | |
except ImportError: | |
from_csv = None | |
from opencompass.utils import model_abbr_from_cfg | |
from .subjective_post_process import post_process_autoj | |
from .utils import get_judgeanswer_and_reference, get_outdir | |
def post_process_ir(judgement: str): | |
"""Input a string like below: | |
Conclusion: [[Correct]]\nReasoning: xxx | |
and extract the score | |
""" | |
matches = re.findall(r'\[\[(.*?)\]\]', judgement) | |
if matches: | |
matches = matches[0] | |
if matches in ['Correct', 'Wrong', '对', '错']: | |
if matches == 'Correct' or matches == '对': | |
return {'score': 1} | |
else: | |
return {'score': 0} | |
else: | |
return None | |
else: | |
return None | |
def get_results( | |
judged_answers, | |
references, | |
fout, | |
fout_flag, | |
model, | |
): | |
capability_ratings = defaultdict(int) | |
capability_counts = defaultdict(int) | |
for ans, ref in zip(judged_answers, references): | |
lan = ref['others']['lan'] | |
capability_ratings['total'] += ans['score'] | |
capability_counts['total'] += 1 | |
capability_ratings[lan] += ans['score'] | |
capability_counts[lan] += 1 | |
capability_avg_ratings = defaultdict(float) | |
for capability, total_score in capability_ratings.items(): | |
capability_avg_ratings[ | |
capability] = total_score / capability_counts[capability] | |
scores = {model: capability_avg_ratings} | |
with open(fout, 'a+', newline='') as csvfile: | |
writer = csv.writer(csvfile) | |
if fout_flag == 0: | |
num_header = [str(i) for i in range(4)] | |
writer.writerow(num_header) | |
header = ['模型'] | |
for category in capability_avg_ratings: | |
header.append(category) | |
writer.writerow(header) | |
row = [model] | |
for category in capability_avg_ratings: | |
row.append(scores[model][category]) | |
writer.writerow(row) | |
class IRSummarizer: | |
"""Do the subjectivity analyze based on evaluation results. | |
Args: | |
config (ConfigDict): The configuration object of the evaluation task. | |
It's expected to be filled out at runtime. | |
""" | |
def __init__(self, config: ConfigDict, judge_type='autoj') -> None: | |
self.tasks = [] | |
self.cfg = config | |
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models'] | |
self.eval_model_abbrs = [ | |
model_abbr_from_cfg(model) for model in self.eval_model_cfgs | |
] | |
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_model']) | |
self.judge_type = judge_type | |
assert self.judge_type in ['general', 'autoj'] | |
self.judge_map = { | |
'general': post_process_ir, | |
'autoj': post_process_autoj, | |
} | |
self.judge_function = self.judge_map[self.judge_type] | |
def summarize(self, | |
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): | |
"""Summarize the subjectivity analysis based on evaluation results. | |
Args: | |
time_str (str): Timestamp for file naming. | |
Returns: | |
pd.DataFrame: The summary results. | |
""" | |
dataset_cfgs = self.cfg['datasets'] | |
output_dir, results_folder = get_outdir(self.cfg, time_str) | |
fout_flag = 0 | |
for eval_model_abbr in self.eval_model_abbrs: | |
subdir = eval_model_abbr + '_judged-by--' + self.judge_abbr | |
subdir_path = os.path.join(results_folder, subdir) | |
if os.path.isdir(subdir_path): | |
model, judge_model = eval_model_abbr, self.judge_abbr | |
fout = osp.join(output_dir, | |
'judged-by--' + judge_model + '.csv') | |
for dataset in dataset_cfgs: | |
judged_answers, references = get_judgeanswer_and_reference( | |
dataset, subdir_path, self.judge_function) | |
get_results(judged_answers, references, fout, fout_flag, | |
model) | |
fout_flag += 1 | |
else: | |
print(subdir_path + ' is not exist! please check!') | |
with open(fout, 'r') as f: | |
x = from_csv(f) | |
print(x) | |