|
import json |
|
import os.path as osp |
|
|
|
from datasets import Dataset |
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator |
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET |
|
|
|
from ..base import BaseDataset |
|
from .math_equivalence import is_equiv |
|
from .post_process import parse_math_answer |
|
|
|
|
|
@LOAD_DATASET.register_module() |
|
class AGIEvalDataset(BaseDataset): |
|
|
|
@staticmethod |
|
def load(path: str, name: str, setting_name: str): |
|
from .dataset_loader import load_dataset, load_dataset_as_result_schema |
|
|
|
assert setting_name in 'zero-shot', 'only support zero-shot setting' |
|
dataset_wo_label = load_dataset(name, setting_name, path) |
|
dataset_with_label = load_dataset_as_result_schema(name, path) |
|
dataset = [] |
|
for d1, d2 in zip(dataset_wo_label, dataset_with_label): |
|
dataset.append({ |
|
'id': d2.index, |
|
'problem_input': d1['context'], |
|
'label': d2.label, |
|
}) |
|
dataset = Dataset.from_list(dataset) |
|
return dataset |
|
|
|
|
|
@LOAD_DATASET.register_module() |
|
class AGIEvalDataset_v2(BaseDataset): |
|
|
|
@staticmethod |
|
def load(path: str, name: str, setting_name: str): |
|
assert setting_name in 'zero-shot', 'only support zero-shot setting' |
|
filename = osp.join(path, name + '.jsonl') |
|
with open(filename, encoding='utf-8') as f: |
|
data = [json.loads(line.strip()) for line in f] |
|
dataset = [] |
|
for item in data: |
|
passage = item['passage'] if item['passage'] else '' |
|
question = passage + item['question'] |
|
options = '\n'.join(item['options']) if item['options'] else '' |
|
if item['label']: |
|
if isinstance(item['label'], list): |
|
label = ''.join(item['label']) |
|
else: |
|
label = item['label'] |
|
else: |
|
label = item['answer'] |
|
d = {'question': question, 'options': options, 'label': label} |
|
dataset.append(d) |
|
dataset = Dataset.from_list(dataset) |
|
return dataset |
|
|
|
|
|
@ICL_EVALUATORS.register_module() |
|
class AGIEvalEvaluator(BaseEvaluator): |
|
|
|
def score(self, predictions, references): |
|
predictions = [parse_math_answer('', pred) for pred in predictions] |
|
details = [] |
|
cnt = 0 |
|
for pred, ref in zip(predictions, references): |
|
detail = {'pred': pred, 'answer': ref, 'correct': False} |
|
if is_equiv(pred, ref): |
|
cnt += 1 |
|
detail['correct'] = True |
|
details.append(detail) |
|
score = cnt / len(predictions) * 100 |
|
return {'score': score, 'details': details} |
|
|
|
|
|
@ICL_EVALUATORS.register_module() |
|
class AGIEvalEvaluator_mcq(BaseEvaluator): |
|
|
|
def score(self, predictions, references): |
|
if len(predictions) != len(references): |
|
return { |
|
'error': 'predictions and references have different ' |
|
'length' |
|
} |
|
details = [] |
|
cnt = 0 |
|
for pred, ref in zip(predictions, references): |
|
detail = {'pred': pred, 'answer': ref, 'correct': False} |
|
if pred == ref: |
|
cnt += 1 |
|
detail['correct'] = True |
|
details.append(detail) |
|
|
|
score = cnt / len(predictions) * 100 |
|
|
|
return {'score': score, 'details': details} |
|
|