TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame contribute delete
6.98 kB
import ast
import json
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from ..base import BaseDataset
from .prompts import kspPrompts
def q2text(q, p=kspPrompts):
knapsack_capacity = q['knapsack_capacity']
items = q['items']
prompt_text = p['Intro'] + '\n' + \
p['Initial_question'].format(knapsack_capacity=knapsack_capacity) + '\n' + \
p['Output_content'] + '\n' + \
p['Output_format'] + \
'\n The items details are as below: \n'
for item in items:
this_line = f"Item {item['id']} has weight {item['weight']} and value {item['value']}."
prompt_text += this_line + '\n'
return prompt_text
@LOAD_DATASET.register_module(force=True)
class cmp_KSP_Dataset(BaseDataset):
@staticmethod
def load(path: str):
raw_data = []
data_path = path
all_data = []
with open(data_path + 'ksp_instances.json', 'r') as f:
data = json.load(f)
for sample in data:
level = len(sample['items']) - 3
all_data.append((level, sample))
for (level, q) in all_data:
prompt = q2text(q)
raw_data.append({
'prompt': prompt,
'q': str(level) + '####\n' + json.dumps(q),
'level': level
})
dataset = Dataset.from_list(raw_data)
return dataset
@ICL_EVALUATORS.register_module(force=True)
class cmp_KSP_Evaluator(BaseEvaluator):
def score(self, predictions, references):
assert len(predictions) == len(references)
result = {'pass': 0, 'fail': 0}
details = {}
for index, (q, output) in enumerate(zip(references, predictions)):
output_dict = {}
level = int(q.split('####\n')[0])
q = json.loads(q.split('####\n')[-1])
try:
llm_string = q
output, reasoning = self.parse_xml_to_dict(llm_string)
output_dict['output'] = output
output_dict['correctness'], _ = self.kspCheck(q, output)
output_dict['reasoning'] = reasoning
output_dict['level'] = level
except Exception as e:
print(f'Attempt failed: {e}')
if output_dict:
if output_dict['correctness']:
r = 'pass'
else:
r = 'fail'
else:
print(f'Failed to run {q}')
r = 'fail'
result[r] += level
details[str(index)] = {'q': q, 'output': output, 'result': r}
result['score'] = result['pass'] / (result['pass'] + result['fail']) * 100
result['details'] = details
final_result = {'Weighted Accuracy': result['score']}
return final_result
def parse_xml_to_dict(self, xml_string):
try:
assert '<final_answer>' in xml_string
assert '</final_answer>' in xml_string
assert '<reasoning>' in xml_string
assert '</reasoning>' in xml_string
final_answer_start = xml_string.index('<final_answer>') + len('<final_answer>')
final_answer_end = xml_string.index('</final_answer>')
reasoning_start = xml_string.index('<reasoning>') + len('<reasoning>')
reasoning_end = xml_string.index('</reasoning>')
final_answer_element = xml_string[final_answer_start:final_answer_end].rstrip().strip().rstrip()
reasoning_element = xml_string[reasoning_start:reasoning_end].rstrip().strip().rstrip()
try:
final_answer_element = ast.literal_eval(final_answer_element)
except Exception:
final_answer_element = ''
except Exception:
final_answer_element = ''
reasoning_element = ''
return final_answer_element, reasoning_element
def ksp_optimal_solution(self, knapsacks, capacity):
"""Provides the optimal solution for the KSP instance with dynamic
programming.
:param knapsacks: A dictionary of the knapsacks.
:param capacity: The capacity of the knapsack.
:return: The optimal value.
"""
# num_knapsacks = len(knapsacks)
# Create a one-dimensional array to store intermediate solutions
dp = [0] * (capacity + 1)
for itemId, (weight, value) in knapsacks.items():
for w in range(capacity, weight - 1, -1):
dp[w] = max(dp[w], value + dp[w - weight])
return dp[capacity]
# KSP
def kspCheck(self, instance, solution):
"""Validates the solution for the KSP instance.
:param instance: A dictionary of the KSP instance.
:param solution: A dictionary of the solution.
:return: A tuple of (is_correct, message).
"""
# Change string key to integer key and value to boolean
items = instance.get('items', [])
knapsacks = {
item['id']: (item['weight'], item['value'])
for item in items
}
ksp_optimal_value = self.ksp_optimal_solution(
knapsacks, instance['knapsack_capacity'])
try:
is_feasible = (solution.get('Feasible', '').lower() == 'yes')
except Exception:
return False, f'Output format is incorrect.'
if is_feasible != (ksp_optimal_value > 0):
return False, f'The solution is {is_feasible} but the optimal solution is {ksp_optimal_value > 0}.'
total_value = int(solution.get('TotalValue', -1))
selectedItems = list(map(int, solution.get('SelectedItemIds', [])))
if len(set(selectedItems)) != len(selectedItems):
return False, f'Duplicate items are selected.'
total_weight = 0
cum_value = 0
# Calculate total weight and value of selected items
for item in selectedItems:
if knapsacks.get(item, False):
weight, value = knapsacks[item]
total_weight += weight
cum_value += value
else:
return False, f'Item {item} does not exist.'
# Check if the item weight exceeds the knapsack capacity
if total_weight > instance['knapsack_capacity']:
return False, f"Total weight {total_weight} exceeds knapsack capacity {instance['knapsack_capacity']}."
if total_value != cum_value:
return False, f'The total value {total_value} does not match the cumulative value {cum_value} of the selected items.'
if total_value != ksp_optimal_value:
return False, f'The total value {total_value} does not match the optimal value {ksp_optimal_value}.'
return True, f'The solution is valid with total weight {total_weight} and total value {total_value}.'