File size: 2,624 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# flake8: noqa: E501
import os.path as osp

import mmengine

from opencompass.utils import dataset_abbr_from_cfg


def get_outdir(cfg, time_str):
    """Get out put path.

    Args:
        cfg (ConfigDict): The running config.
        time_str (str): Current time.
    """
    work_dir = cfg['work_dir']
    output_path = osp.join(work_dir, 'summary', f'summary_{time_str}.txt')
    output_dir = osp.join(osp.split(output_path)[0], f'{time_str}')
    mmengine.mkdir_or_exist(output_dir)
    results_folder = osp.join(work_dir, 'results')
    return output_dir, results_folder


def get_judgeanswer_and_reference(dataset, subdir_path, post_process):
    """Extract judgements (scores) and references.

    Args:
        dataset (ConfigDict): Dataset config.
        subdir_path (str): Model path in results dir.
        post_process (function): The pre-defined extract function.
    """
    dataset_abbr = dataset_abbr_from_cfg(dataset)
    filename = osp.join(subdir_path, dataset_abbr + '.json')
    partial_filename = osp.join(subdir_path, dataset_abbr + '_0.json')
    if osp.exists(osp.realpath(filename)):
        result = mmengine.load(filename)
    elif osp.exists(osp.realpath(partial_filename)):
        filename = partial_filename
        result = {}
        i = 1
        partial_dict_flag = 0
        while osp.exists(osp.realpath(filename)):
            res = mmengine.load(filename)
            for k, v in res.items():
                result[partial_dict_flag] = v
                partial_dict_flag += 1
            filename = osp.join(subdir_path,
                                dataset_abbr + '_' + str(i) + '.json')
            i += 1
    else:
        result = {}

    if len(result) == 0:
        print('*' * 100)
        print('There are no results for ' + filename + ' or ' +
              partial_filename)
        print('*' * 100)
        assert len(result) > 0

    judged_answers = []
    references = []
    for k, v in result.items():
        processed_judge = post_process(v['prediction'])
        if processed_judge is not None:
            judged_answers.append(processed_judge)
            references.append(v['gold'])
    if len(judged_answers) != len(result):
        print(
            f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements, please check!'
        )
    if len(judged_answers) == 0:
        print('*' * 100)
        print(
            'There are no extracted judgements, please change your judge model or check your prompt!!!'
        )
        print('*' * 100)
    assert len(judged_answers) > 0
    return judged_answers, references