File size: 10,281 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# flake8: noqa: E501
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
from itertools import product

import mmengine
from mmengine import ConfigDict

try:
    from prettytable import from_csv
except ImportError:
    from_csv = None

from opencompass.partitioners.sub_naive import remove_duplicate_pairs
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg


def match_general_answer(s):
    temp = s[0]
    if temp in ['A', 'B', 'C', 'D']:
        return temp
    else:
        return None


def match_GPT4_answer(s):
    if result := re.findall('(?:选择:|Choice: )([ABCD])', s):
        return result[0]
    else:
        return None


judge_map = {'smart': match_GPT4_answer, 'other': match_general_answer}


def call_function(name, arg):
    if name in judge_map:
        return judge_map[name](arg)
    else:
        print('Function not found in the map.')


class Corev2Summarizer:
    """Do the subjectivity analyze based on evaluation results.

    Args:
        config (ConfigDict): The configuration object of the evaluation task.
            It's expected to be filled out at runtime.
    """

    def __init__(self, config: ConfigDict, match_method='smart') -> None:
        self.tasks = []
        self.cfg = config
        self.match_method = match_method
        self.base_models = self.cfg['eval']['partitioner']['base_models']
        self.compare_models = self.cfg['eval']['partitioner']['compare_models']
        self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_model'])

    def summarize(self,
                  time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
        """Summarize the subjectivity analysis based on evaluation results.

        Args:
            time_str (str): Timestamp for file naming.

        Returns:
            pd.DataFrame: The summary results.
        """
        dataset_cfgs = self.cfg['datasets']
        work_dir = self.cfg['work_dir']
        self.work_dir = work_dir

        self.time_str = time_str
        output_path = osp.join(self.work_dir, 'summary',
                               f'summary_{self.time_str}.txt')
        output_dir = osp.join(osp.split(output_path)[0], f'{self.time_str}')
        mmengine.mkdir_or_exist(output_dir)
        results_folder = osp.join(work_dir, 'results')

        model_combinations = list(
            product(self.base_models, self.compare_models))
        unique_combinations = remove_duplicate_pairs(
            [combo for combo in model_combinations if combo[0] != combo[1]])

        for model_pair in unique_combinations:
            model1, model2, judge_model = model_pair[0]['abbr'], model_pair[1][
                'abbr'], self.judge_abbr
            subdir = model1 + '_' + model2 + '_judged-by--' + self.judge_abbr
            subdir_path = os.path.join(results_folder, subdir)
            if os.path.isdir(subdir_path):
                fout = osp.join(output_dir,
                                'judged-by--' + judge_model + '-report.csv')
                for dataset in dataset_cfgs:
                    dataset_abbr = dataset_abbr_from_cfg(dataset)
                    filename = os.path.join(subdir_path,
                                            dataset_abbr + '.json')
                    partial_filename = os.path.join(subdir_path,
                                                    dataset_abbr + '_0.json')
                    if osp.exists(osp.realpath(filename)):
                        result = mmengine.load(filename)
                    elif osp.exists(osp.realpath(partial_filename)):
                        filename = partial_filename
                        result = {}
                        i = 1
                        partial_dict_flag = 0
                        while osp.exists(osp.realpath(filename)):
                            res = mmengine.load(filename)
                            for k, v in res.items():
                                result[partial_dict_flag] = v
                                partial_dict_flag += 1
                            filename = os.path.join(
                                subdir_path,
                                dataset_abbr + '_' + str(i) + '.json')
                            i += 1
                    else:
                        result = {}

                    if len(result) == 0:
                        print('*' * 100)
                        print('There are no results for ' + filename + ' or ' +
                              partial_filename)
                        print('*' * 100)
                        assert len(result) > 0

                    judged_answers = []
                    references = []
                    for k, v in result.items():
                        judged_answers.append(
                            call_function(self.match_method, v['prediction']))
                        references.append(v['gold'])
                    successful_judged_answers = len(
                        judged_answers) - judged_answers.count(None)
                    print(
                        f'Among {len(judged_answers)} judgements, successfully extracted {successful_judged_answers} judgements.'
                    )
                    if successful_judged_answers == 0:
                        print('*' * 100)
                        print(
                            'There are no extracted judgements, please change your judge model or check your prompt!!!'
                        )
                        print('*' * 100)
                    assert successful_judged_answers > 0

                    win_both_model1, win_both_model2, half_draw_model1, half_draw_model2, categories = defaultdict(
                        float), defaultdict(float), defaultdict(
                            float), defaultdict(float), defaultdict(float)
                    model1 = references[0]['answer1']
                    model2 = references[0]['answer2']
                    for prediction, reference in zip(judged_answers,
                                                     references):
                        if prediction is not None:
                            categories[reference['capability'].split('-')
                                       [0]] += 1
                            categories[reference['capability']] += 1
                            winner = ''
                            if prediction == 'A':
                                winner = reference['answer1']
                            elif prediction == 'B':
                                winner = reference['answer2']
                            elif prediction == 'C':
                                win_both_model1[reference['capability'].split(
                                    '-')[0]] += 1
                                win_both_model2[reference['capability'].split(
                                    '-')[0]] += 1
                                win_both_model1[reference['capability']] += 1
                                win_both_model2[reference['capability']] += 1
                            if model1 == winner:
                                half_draw_model1[reference['capability'].split(
                                    '-')[0]] += 1
                                win_both_model1[reference['capability'].split(
                                    '-')[0]] += 1
                                half_draw_model1[reference['capability']] += 1
                                win_both_model1[reference['capability']] += 1
                            elif model2 == winner:
                                half_draw_model2[reference['capability'].split(
                                    '-')[0]] += 1
                                win_both_model2[reference['capability'].split(
                                    '-')[0]] += 1
                                half_draw_model2[reference['capability']] += 1
                                win_both_model2[reference['capability']] += 1
                    for capability in categories:
                        if capability not in half_draw_model1:
                            win_both_model1[capability] = 0.0
                            half_draw_model1[capability] = 0.0
                        else:
                            win_both_model1[capability] = round(
                                (win_both_model1[capability] /
                                 categories[capability]) * 100, 2)
                            half_draw_model1[capability] = round(
                                (half_draw_model1[capability] /
                                 categories[capability]) * 100, 2)
                        if capability not in half_draw_model2:
                            win_both_model2[capability] = 0.0
                            half_draw_model2[capability] = 0.0
                        else:
                            win_both_model2[capability] = round(
                                (win_both_model2[capability] /
                                 categories[capability]) * 100, 2)
                            half_draw_model2[capability] = round(
                                (half_draw_model2[capability] /
                                 categories[capability]) * 100, 2)
                    scores = {
                        'win_both_' + model1: win_both_model1,
                        'half_draw_' + model1: half_draw_model1,
                        'win_both_' + model2: win_both_model2,
                        'half_draw_' + model2: half_draw_model2
                    }
                    rows = list(scores.keys())
                    columns = list(scores[rows[0]].keys())
                    with open(fout, 'a+', newline='') as csvfile:
                        writer = csv.writer(csvfile)
                        writer.writerow([model1 + '_vs_' + model2] + columns)
                        for row in rows:
                            writer.writerow(
                                [row] +
                                [scores[row][column] for column in columns])
            else:
                print(subdir_path + ' is not exist! please check!')
        with open(fout, 'r') as f:
            x = from_csv(f)
        print(x)