File size: 9,349 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# flake8: noqa: E501
import ast
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
from itertools import product

import mmengine
from mmengine import ConfigDict
from prettytable import from_csv

from opencompass.partitioners.sub_naive import remove_duplicate_pairs
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg

from .utils import get_judgeanswer_and_reference, get_outdir


def post_process_compass_arena(s):
    if result := re.findall('(?:选择:|Choice: )([ABC])', s):
        return result[0]
    else:
        return None


def check_position_bias(judged_answers, references, banned_choice=['C']):
    """Check position bias for judgellm's judgement.

    Args:
        judged_answers: The successfully extracted judgement.
        references: The references contains original question, which is used to located the same question for different position judgement.
    """
    position_bias_flag = 0
    position_bias_dict = {}
    for judge, ref in zip(judged_answers, references):
        question = ref['question']
        question_hash = hash(question)
        if question_hash not in position_bias_dict:
            position_bias_dict[question_hash] = {
                'question': question,
                'judge': judge
            }
        else:
            first_judge = position_bias_dict[question_hash]['judge']
            if judge == first_judge and first_judge not in banned_choice and judge not in banned_choice:
                # If second choice is same with first choice, there has position bias.
                position_bias_flag += 1
    return position_bias_flag


class CompassArenaSummarizer:
    """Do the subjectivity analyze based on evaluation results.

    Args:
        config (ConfigDict): The configuration object of the evaluation task.
            It's expected to be filled out at runtime.
    """

    def __init__(self,
                 config: ConfigDict,
                 judge_type='general',
                 check_pos_bias=True,
                 summary_type='single') -> None:
        self.tasks = []
        self.cfg = config
        self.base_models = self.cfg['eval']['partitioner']['base_models']
        self.compare_models = self.cfg['eval']['partitioner']['compare_models']
        self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_model'])
        self.judge_type = judge_type
        assert self.judge_type in ['general']
        self.judge_map = {
            'general': post_process_compass_arena,
        }
        self.judge_function = self.judge_map[self.judge_type]
        self.check_pos_bias = check_pos_bias
        self.summary_type = summary_type

    def summarize(
            self,
            time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
    ):
        """Summarize the subjectivity analysis based on evaluation results.

        Args:
            time_str (str): Timestamp for file naming.

        Returns:
            pd.DataFrame: The summary results.
        """
        dataset_cfgs = self.cfg['datasets']
        output_dir, results_folder = get_outdir(self.cfg, time_str)
        model_combinations = list(
            product(self.base_models, self.compare_models))
        unique_combinations = remove_duplicate_pairs(
            [combo for combo in model_combinations if combo[0] != combo[1]])
        judge_model = self.judge_abbr
        fout_list = []
        for dataset in dataset_cfgs:
            dataset_abbr = dataset_abbr_from_cfg(dataset)
            fout = osp.join(
                output_dir, 'judged-by--' + judge_model + '-' + dataset_abbr +
                '-report.csv')
            fout_list.append(fout)
            for model_pair in unique_combinations:
                model1, model2, = model_pair[0]['abbr'], model_pair[1]['abbr'],
                subdir = model1 + '_' + model2 + '_judged-by--' + judge_model
                subdir_path = os.path.join(results_folder, subdir)
                if os.path.isdir(subdir_path):
                    judged_answers, references = get_judgeanswer_and_reference(
                        dataset,
                        subdir_path,
                        self.judge_function,
                    )
                    if self.check_pos_bias:
                        bias_num = check_position_bias(judged_answers,
                                                       references)
                    else:
                        bias_num = 0
                    win_model1, win_model2, categories = defaultdict(
                        float), defaultdict(float), defaultdict(float)
                    model1, model2 = references[0]['answer1'], references[0][
                        'answer2']
                    for prediction, reference in zip(judged_answers,
                                                     references):
                        if self.summary_type == 'single':
                            if prediction == 'A':
                                categories['total'] += 1
                                categories[reference['capability']] += 1
                                if reference['answer1'] == model1:
                                    win_model1[reference['capability']] += 1
                                    win_model1['total'] += 1
                                else:
                                    win_model2[reference['capability']] += 1
                                    win_model2['total'] += 1
                            elif prediction == 'B':
                                categories['total'] += 1
                                categories[reference['capability']] += 1
                                if reference['answer1'] == model1:
                                    win_model2[reference['capability']] += 1
                                    win_model2['total'] += 1
                                else:
                                    win_model1[reference['capability']] += 1
                                    win_model1['total'] += 1
                        elif self.summary_type == 'half_add':
                            categories['total'] += 1
                            categories[reference['capability']] += 1
                            if prediction == 'A':
                                if reference['answer1'] == model1:
                                    win_model1[reference['capability']] += 1
                                    win_model1['total'] += 1
                                else:
                                    win_model2[reference['capability']] += 1
                                    win_model2['total'] += 1
                            elif prediction == 'B':
                                if reference['answer1'] == model1:
                                    win_model2[reference['capability']] += 1
                                    win_model2['total'] += 1
                                else:
                                    win_model1[reference['capability']] += 1
                                    win_model1['total'] += 1
                            elif prediction == 'C':
                                win_model1[reference['capability']] += 0.5
                                win_model1['total'] += 0.5
                                win_model2[reference['capability']] += 0.5
                                win_model2['total'] += 0.5
                    for capability in categories:
                        if capability not in win_model1:
                            win_model1[capability] = 0.0
                        else:
                            win_model1[capability] = round(
                                (win_model1[capability] /
                                 categories[capability]) * 100, 2)
                        if capability not in win_model2:
                            win_model2[capability] = 0.0
                        else:
                            win_model2[capability] = round(
                                (win_model2[capability] /
                                 categories[capability]) * 100, 2)
                    win_model1['position_bias'] = bias_num
                    win_model2['position_bias'] = bias_num
                    scores = {
                        'win_' + model1: win_model1,
                        'win_' + model2: win_model2
                    }
                    rows = list(scores.keys())
                    columns = list(scores[rows[0]].keys())
                    columns.insert(0, columns.pop(columns.index('total')))
                    columns.insert(1,
                                   columns.pop(columns.index('position_bias')))
                    with open(fout, 'a+', newline='') as csvfile:
                        writer = csv.writer(csvfile)
                        writer.writerow([model1 + '_vs_' + model2] + columns)
                        for row in rows:
                            writer.writerow(
                                [row] +
                                [scores[row][column] for column in columns])
                else:
                    print(subdir_path + ' is not exist! please check!')
        for fout in fout_list:
            with open(fout, 'r') as f:
                x = from_csv(f)
            print(x)