File size: 11,582 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import sys

import mmengine
import torch
import torch.nn as nn
from mmengine.device import get_device
from transformers import StoppingCriteriaList

from opencompass.registry import MM_MODELS

from .utils import StoppingCriteriaSub


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


def load_package():
    """Load required packages from MiniGPT-4."""
    current_file_path = os.path.abspath(__file__)
    current_folder_path = os.path.dirname(current_file_path)

    sys.path.append(os.path.join(current_folder_path, 'MiniGPT-4'))  # noqa

    try:
        # the latest version of MiniGPT4
        from minigpt4.models.minigpt4 import MiniGPT4
    except ImportError:
        # the old version of MiniGPT4
        from minigpt4.models.mini_gpt4 import MiniGPT4

    sys.path.pop(-1)

    return MiniGPT4


MiniGPT4 = load_package()


@MM_MODELS.register_module('minigpt-4')
class MiniGPT4Inferencer(MiniGPT4):
    """Inference code of MiniGPT-4.

    Args:
        llama_model (str): The path of vicuna path.
        prompt_constructor (dict): The config of prompt constructor.
        post_processor (dict): The config of post processor.
        do_sample (bool): Whether use sampling. Defaults to False.
        max_length (int): The max length of output. Defaults to 30.
        img_size (int): The size of image. Defaults to 224.
        low_resource (bool): Whether loaded in low precision.
            Defaults to False.
        is_caption_task (bool): Whether the task is caption task.
            Defaults to False.
    """

    def __init__(self,
                 llama_model: str,
                 prompt_constructor: dict,
                 post_processor: dict,
                 do_sample: bool = False,
                 max_length: int = 30,
                 img_size: int = 224,
                 low_resource: bool = False,
                 is_caption_task: bool = False,
                 mode: str = 'generation',
                 n_segments: int = 1) -> None:
        super().__init__(llama_model=llama_model,
                         low_resource=low_resource,
                         img_size=img_size)
        self.mode = mode
        self.n_segments = n_segments

        cur_device = get_device()
        stop_words_ids = [
            torch.tensor([835]).to(cur_device),
            torch.tensor([2277, 29937]).to(cur_device),
        ]
        self.stopping_criteria = StoppingCriteriaList(
            [StoppingCriteriaSub(stops=stop_words_ids)])

        self.prompt_constructor = mmengine.registry.build_from_cfg(
            prompt_constructor, MM_MODELS)
        if post_processor is not None:
            self.post_processor = mmengine.registry.build_from_cfg(
                post_processor, MM_MODELS)
        self.do_sample = do_sample
        self.max_length = max_length
        self.is_caption_task = is_caption_task

    def forward(self, batch):
        if self.mode == 'generation':
            return self.generate(batch)
        elif self.mode == 'loss':
            return self.loss(batch)
        else:
            raise RuntimeError(f'Invalid mode "{self.mode}".')

    def encode_img(self, image):
        device = image.device

        with self.maybe_autocast():
            if image.dim() == 5:
                inputs_llama, atts_llama = [], []
                for j in range(image.size(2)):
                    this_frame = image[:, :, j, :, :]
                    frame_embeds = self.ln_vision(
                        self.visual_encoder(this_frame))
                    frame_atts = torch.ones(frame_embeds.size()[:-1],
                                            dtype=torch.long).to(image.device)

                    query_tokens = self.query_tokens.expand(
                        frame_embeds.shape[0], -1, -1)
                    frame_query_output = self.Qformer.bert(
                        query_embeds=query_tokens,
                        encoder_hidden_states=frame_embeds,
                        encoder_attention_mask=frame_atts,
                        return_dict=True,
                    )

                    frame_inputs_llama = self.llama_proj(
                        frame_query_output.last_hidden_state[:, :query_tokens.
                                                             size(1), :])
                    frame_atts_llama = torch.ones(
                        frame_inputs_llama.size()[:-1],
                        dtype=torch.long).to(image.device)
                    inputs_llama.append(frame_inputs_llama)
                    atts_llama.append(frame_atts_llama)
                inputs_llama = torch.cat(inputs_llama, dim=1)
                atts_llama = torch.cat(atts_llama, dim=1)
            else:
                image_embeds = self.ln_vision(
                    self.visual_encoder(image)).to(device)
                image_atts = torch.ones(image_embeds.size()[:-1],
                                        dtype=torch.long).to(device)

                query_tokens = self.query_tokens.expand(
                    image_embeds.shape[0], -1, -1)
                query_output = self.Qformer.bert(
                    query_embeds=query_tokens,
                    encoder_hidden_states=image_embeds,
                    encoder_attention_mask=image_atts,
                    return_dict=True,
                )

                inputs_llama = self.llama_proj(query_output.last_hidden_state)
                atts_llama = torch.ones(inputs_llama.size()[:-1],
                                        dtype=torch.long).to(image.device)
        return inputs_llama, atts_llama

    def pack_inputs(self, batch):
        images = [image.unsqueeze(0) for image in batch['inputs']]
        data_samples = [data_sample for data_sample in batch['data_samples']]
        images = torch.cat(images, dim=0).to(get_device())
        inputs = {'image': images, 'data_samples': data_samples}
        return inputs

    def generate(self, batch):
        inputs = self.pack_inputs(batch)
        inputs = self.prompt_constructor(inputs)
        image = inputs['image']
        prompt = inputs['prompt']
        data_samples = inputs['data_samples']

        # The main process of generation
        img_embeds, _ = self.encode_img(image)
        prompt_segs = prompt.split('<ImageHere>')
        prompt_seg_tokens = [
            self.llama_tokenizer(seg,
                                 return_tensors='pt',
                                 add_special_tokens=i == 0).
            to(self.llama_model.model.embed_tokens.weight.device).input_ids
            for i, seg in enumerate(prompt_segs)
        ]
        prompt_seg_embs = [
            self.llama_model.model.embed_tokens(seg)
            for seg in prompt_seg_tokens
        ]
        prompt_seg_embs = [prompt_seg_embs[0], img_embeds, prompt_seg_embs[1]]
        prompt_embs = torch.cat(prompt_seg_embs, dim=1)

        # generate output
        outputs = self.llama_model.generate(
            inputs_embeds=prompt_embs,
            max_length=self.max_length,
            num_beams=5,
            do_sample=self.do_sample,
            min_length=1,
            top_p=0.9,
            repetition_penalty=1.0,
            length_penalty=-1.0,
            temperature=1.0,
            stopping_criteria=self.stopping_criteria,
            num_return_sequences=1)

        for i, data_sample in enumerate(data_samples):
            output_token = outputs[i]
            output_text = self.post_processor(output_token,
                                              self.llama_tokenizer)
            if self.is_caption_task:
                data_sample.pred_caption = output_text
            else:
                data_sample.pred_answer = output_text
            data_samples[i] = data_sample
        return data_samples

    def loss(self, batch):
        inputs = self.pack_inputs(batch)
        inputs = self.prompt_constructor(inputs)
        image = inputs['image']
        batch_size = image.size(0)
        prompt = inputs['prompt']
        data_samples = inputs['data_samples']
        choices = data_samples[0].choices

        with torch.no_grad():
            img_embeds, atts_img = self.encode_img(image)
            img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img,
                                                    prompt)

            self.llama_tokenizer.padding_side = 'right'

            n_cands = len(choices)
            losses = []
            for n in range(self.n_segments):
                seg_len = n_cands // self.n_segments
                if n == (self.n_segments - 1):
                    seg_len = n_cands - seg_len * (self.n_segments - 1)

                to_regress_tokens = self.llama_tokenizer(
                    choices,
                    return_tensors='pt',
                    padding='longest',
                    truncation=True,
                    max_length=self.max_txt_len,
                    add_special_tokens=False).to(image.device)

                targets = to_regress_tokens.input_ids.masked_fill(
                    to_regress_tokens.input_ids ==
                    self.llama_tokenizer.pad_token_id, -100)

                empty_targets = (
                    torch.ones([atts_img.shape[0], atts_img.shape[1] + 1],
                               dtype=torch.long).to(image.device).fill_(
                                   -100)  # plus one for bos
                )
                empty_targets = empty_targets.repeat_interleave(seg_len, dim=0)
                targets = torch.cat([empty_targets, targets], dim=1)

                bos = torch.ones([batch_size, 1],
                                 dtype=to_regress_tokens.input_ids.dtype,
                                 device=to_regress_tokens.input_ids.device
                                 ) * self.llama_tokenizer.bos_token_id
                bos_embeds = self.llama_model.model.embed_tokens(bos)
                bos_embeds = bos_embeds.repeat_interleave(seg_len, dim=0)
                img_embeds = img_embeds.repeat_interleave(seg_len, dim=0)

                atts_bos = atts_img[:, :1]
                atts_bos = atts_bos.repeat_interleave(seg_len, dim=0)
                atts_img = atts_img.repeat_interleave(seg_len, dim=0)

                to_regress_embeds = self.llama_model.model.embed_tokens(
                    to_regress_tokens.input_ids)

                inputs_embeds = torch.cat(
                    [bos_embeds, img_embeds, to_regress_embeds], dim=1)
                attention_mask = torch.cat(
                    [atts_bos, atts_img, to_regress_tokens.attention_mask],
                    dim=1)

                with self.maybe_autocast():
                    outputs = self.llama_model(
                        inputs_embeds=inputs_embeds,
                        attention_mask=attention_mask,
                        return_dict=True,
                        labels=targets,
                        reduction='none',
                    )
                loss = outputs.loss
                loss = loss.view(targets.size(0), -1).sum(1)
                loss = loss.reshape(batch_size, seg_len)
                losses.append(loss)
            # losses of 4 choices
            losses = torch.cat(losses, dim=-1)[0]

        for i, data_sample in enumerate(data_samples):
            data_sample.losses = losses
            data_samples[i] = data_sample
        return data_samples