File size: 8,868 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import json
import os
import random
from pathlib import Path
import tiktoken
from datasets import Dataset
from opencompass.datasets.base import BaseDataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET
def get_random_needles(file_path, needle_count):
with open(file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
matching_records = [
record for record in data
if record.get('derivation_count') == needle_count
]
if matching_records:
random_record = random.choice(matching_records)
return {
'needles': random_record['derivations'],
'answer': random_record['answer'],
'retrieval_question': random_record['question']
}
else:
return None
@LOAD_DATASET.register_module()
class NeedleBenchMultiDataset(BaseDataset):
@staticmethod
def load(
path: str,
length: int,
depth: int,
tokenizer_model: str,
file_list: 'list[str]',
num_repeats_per_file: int,
length_buffer: int,
guide: bool,
language: str,
needle_file_name: str,
num_needles: int,
diff: int,
):
data = {'prompt': [], 'answer': []}
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
def _generate_context(tokens_context, depth_percent, needles):
tokens_needle = [
_get_tokens_from_context(needle) for needle in needles
]
insertion_points = []
total_length = len(tokens_context)
for i, needle_tokens in enumerate(tokens_needle):
if i == 0:
insertion_point = int(total_length * (depth_percent / 100))
else:
insertion_point = int(insertion_points[i - 1] +
len(tokens_needle[i - 1]) +
total_length * (diff / 100))
insertion_point = min(
insertion_point,
total_length + sum(len(tn) for tn in tokens_needle[:i]))
insertion_points.append(insertion_point)
for i, needle_tokens in enumerate(tokens_needle):
tokens_context = tokens_context[:insertion_points[i]] \
+ needle_tokens + tokens_context[insertion_points[i]:]
for j in range(i + 1, len(insertion_points)):
insertion_points[j] += len(needle_tokens)
new_context = _decode_tokens(tokens_context)
return new_context
def _get_tokens_from_context(context):
if isinstance(context, list):
return [tokenizer.encode(item) for item in context]
else:
return tokenizer.encode(context)
def _decode_tokens(tokens):
return tokenizer.decode(tokens)
def _modify_retrieval_question(retrieval_question):
if language == 'Chinese':
guide_retrieval_question = (retrieval_question +
'在回答之前,请思考文档中与此问题'
'最相关的内容是什么。')
return guide_retrieval_question
elif language == 'English':
guide_retrieval_question = (
retrieval_question + 'Before answering, please consider'
' what in the document is most relevant to this question.')
return guide_retrieval_question
else:
raise ValueError(f"Language '{language}' is not supported.")
def _generate_prompt(context, retrieval_question):
if guide:
retrieval_question = _modify_retrieval_question(
retrieval_question)
if language == 'Chinese':
prompt = ('你是一个善于回答用户问题的智能AI助手\n'
'请保持你的回答简洁清楚。不要说和下面文档中的无关的话'
',或重复你的回答\n'
f'用户现在给你的文档是{context}\n\n'
f'现在请问:{retrieval_question}')
elif language == 'English':
prompt = ('You are an intelligent AI assistant skilled in '
'answering user questions.\n'
'Please keep your answers concise and clear. Do not'
' talk about irrelevant topics or repeat your '
'answers.\n'
f'The document given to you by the user is {context}'
f'\n\nNow, the question is: {retrieval_question}')
else:
raise ValueError(f"Language '{language}' is not supported.")
return prompt
files = Path(path).glob('*.jsonl')
needle_file_path = os.path.join(path, needle_file_name)
for file in files:
if file.name not in file_list:
continue
with open(file, 'r', encoding='utf-8') as f:
lines_bak = [json.loads(line.strip()) for line in f]
lines = lines_bak.copy()
for counter in range(num_repeats_per_file):
random.seed(counter)
random.shuffle(lines)
random_needle_data = get_random_needles(
needle_file_path, num_needles)
needles = [
'\n' + needle + '\n'
for needle in random_needle_data['needles']
]
answer = random_needle_data['answer']
keyword = answer
retrieval_question = random_needle_data['retrieval_question']
context_length = length - length_buffer
target_length_per_record = context_length - \
sum(len(tokens) for tokens
in _get_tokens_from_context(needles))
target_length_per_record = max(target_length_per_record, 0)
accumulated_tokens = []
for line in lines:
tokens_current_line = _get_tokens_from_context(
line['text'])
accumulated_tokens.extend(tokens_current_line)
if len(accumulated_tokens) >= target_length_per_record:
break
processed_text = _generate_context(
accumulated_tokens[:target_length_per_record], depth,
needles)
processed_prompt = _generate_prompt(processed_text,
retrieval_question)
data['prompt'].append(processed_prompt)
data['answer'].append(answer + '*' + keyword)
dataset = Dataset.from_dict({
'prompt': data['prompt'],
'answer': data['answer'],
})
return dataset
class NeedleBenchMultiEvaluator(BaseEvaluator):
def levenshtein_distance(self, s1, s2):
if len(s1) < len(s2):
return self.levenshtein_distance(s2, s1)
if len(s2) == 0:
return len(s1)
previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def score(self, predictions, gold):
if len(predictions) != len(gold):
return {'error': 'predictions and gold have different lengths'}
total_score = 0
details = []
for prediction, reference in zip(predictions, gold):
answer, keyword = reference.split('*')
keywords = keyword.lower().split()
prediction = prediction.lower()
keyword_score = 100 / len(keywords) if keywords else 0
matched_keywords = sum(1 for kword in keywords
if kword in prediction)
score = matched_keywords * keyword_score
detail = {
'pred': prediction,
'answer': reference,
'matched_keywords': matched_keywords,
'score': score
}
total_score += score
details.append(detail)
average_score = total_score / len(predictions) if predictions else 0
return {'score': average_score, 'details': details}
|