File size: 9,597 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import difflib
import re
import string
from collections import Counter
from typing import List
import jieba
from fuzzywuzzy import fuzz
from rouge import Rouge
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def normalize_zh_answer(s):
"""Lower text and remove punctuation, extra whitespace."""
def white_space_fix(text):
return ''.join(text.split())
def remove_punc(text):
cn_punctuation = '!?。。"#$%&'()*+,-/:;<=>@[\]^_`\
{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.'
all_punctuation = set(string.punctuation + cn_punctuation)
return ''.join(ch for ch in text if ch not in all_punctuation)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(s)))
@ICL_EVALUATORS.register_module()
class LongBenchF1Evaluator(BaseEvaluator):
def __init__(self, language: str = 'en') -> None:
super().__init__()
assert language in ['en', 'zh']
self.language = language
def score(self, predictions: List, references: List) -> dict:
def f1_score(prediction, reference, **kwargs):
common = Counter(prediction) & Counter(reference)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction)
recall = 1.0 * num_same / len(reference)
f1 = (2 * precision * recall) / (precision + recall)
return f1
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
task_score = 0.
for reference in reference_list:
if self.language == 'en':
normalized_prediction = normalize_answer(prediction)
normalized_reference = normalize_answer(reference)
prediction_tokens = normalized_prediction.split()
reference_tokens = normalized_reference.split()
else:
prediction_tokens = list(
jieba.cut(prediction, cut_all=False))
reference_tokens = list(jieba.cut(reference,
cut_all=False))
prediction_tokens = [
normalize_zh_answer(token)
for token in prediction_tokens
]
reference_tokens = [
normalize_zh_answer(token)
for token in reference_tokens
]
prediction_tokens = [
token for token in prediction_tokens if len(token) > 0
]
reference_tokens = [
token for token in reference_tokens if len(token) > 0
]
task_score = max(task_score,
f1_score(prediction_tokens, reference_tokens))
score += task_score
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchCountEvaluator(BaseEvaluator):
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
for reference in reference_list:
numbers = re.findall(r'\d+', prediction)
right_num = 0
for number in numbers:
if str(number) == str(reference):
right_num += 1
score += 0.0 if len(numbers) == 0 else float(right_num /
len(numbers))
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchRetrievalEvaluator(BaseEvaluator):
def __init__(self, language: str = 'en') -> None:
super().__init__()
assert language in ['en', 'zh']
self.language = language
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
for reference in reference_list:
if self.language == 'en':
pattern = r'Paragraph (\d+)'
else:
pattern = r'段落(\d+)'
matches = re.findall(pattern, reference)
reference_id = matches[0]
numbers = re.findall(r'\d+', prediction)
right_num = 0
for number in numbers:
if str(number) == str(reference_id):
right_num += 1
score += 0.0 if len(numbers) == 0 else float(right_num /
len(numbers))
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchRougeEvaluator(BaseEvaluator):
def __init__(self, language: str = 'en') -> None:
super().__init__()
assert language in ['en', 'zh']
self.language = language
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
task_score = 0.
for reference in reference_list:
if self.language == 'zh':
prediction = ' '.join(
list(jieba.cut(prediction, cut_all=False)))
reference = ' '.join(
list(jieba.cut(reference, cut_all=False)))
rouge = Rouge()
try:
cur_score = rouge.get_scores([prediction], [reference],
avg=True)['rouge-l']['f']
except Exception:
cur_score = 0.
task_score = max(task_score, cur_score)
score += task_score
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchCodeSimEvaluator(BaseEvaluator):
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]
task_score = 0.
for reference in reference_list:
all_lines = prediction.lstrip('\n').split('\n')
prediction = ''
for line in all_lines:
if ('`' not in line) and ('#'
not in line) and ('//'
not in line):
prediction = line
break
task_score = max(task_score,
(fuzz.ratio(prediction, reference) / 100))
score += task_score
score = score / len(predictions) * 100
return {'score': score}
@ICL_EVALUATORS.register_module()
class LongBenchClassificationEvaluator(BaseEvaluator):
def score(self, predictions: List, references: List) -> dict:
score = 0.
for i in range(len(predictions)):
prediction = predictions[i]
reference_list = references[i]['answers']
for reference in reference_list:
em_match_list = []
all_classes = references[i]['all_classes']
for class_name in all_classes:
if class_name in prediction:
em_match_list.append(class_name)
for match_term in em_match_list:
if match_term in reference and match_term != reference:
em_match_list.remove(match_term)
if em_match_list != 0:
if reference in em_match_list:
score += (1.0 / len(em_match_list))
else:
best_match = None
highest_similarity = 0
for names in all_classes:
similarity = difflib.SequenceMatcher(
None, names, prediction).ratio()
if similarity > highest_similarity:
highest_similarity = similarity
best_match = names
score += float(best_match == reference)
score = score / len(predictions) * 100
return {'score': score}
|