File size: 12,283 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from itertools import groupby
from string import punctuation
from typing import List
from modules.tokenizer import Tokenizer
from modules.alignment import Alignment, read_cilin, read_confusion
import Levenshtein

class Merger:
    """
    合并编辑操作,从Token-Level转换为Span-Level
    """

    def __init__(self,
                 granularity: str = "word",
                 merge: bool = False):
        chinese_punct = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟–—‘'‛“”„‟…‧."
        self.punctuation = punctuation + chinese_punct
        self.not_merge_token = [punct for punct in self.punctuation]
        self.granularity = granularity
        self.merge = merge

    @staticmethod
    def _merge_edits(seq, tag="X"):
        if seq:
            return [(tag, seq[0][1], seq[-1][2], seq[0][3], seq[-1][4])]
        else:
            return seq

    @staticmethod
    def _check_revolve(span_a, span_b):
        span_a = span_a + span_a
        return span_b in span_a

    def _process_seq(self, seq, src_tokens, tgt_tokens):
        if len(seq) <= 1:
            return seq

        ops = [op[0] for op in seq]
        if set(ops) == {"D"} or set(ops) == {"I"}:
            return self._merge_edits(seq, set(ops).pop())

        if set(ops) == {"D", "I"} or set(ops) == {"I", "D"}:
            # do not merge this pattern_from_qua.txt
            return seq

        if set(ops) == {"S"}:
            if self.granularity == "word":
                return seq
            else:
                return self._merge_edits(seq, "S")

        if set(ops) == {"M"}:
            return self._merge_edits(seq, "M")

        return self._merge_edits(seq, "S")

    def __call__(self,
                 align_obj,
                 src: List,
                 tgt: List,
                 verbose: bool = False):
        """
        Based on ERRANT's merge, adapted for Chinese
        """
        src_tokens = [x[0] for x in src]
        tgt_tokens = [x[0] for x in tgt]
        edits = []
        # Split alignment into groups of M, T and rest. (T has a number after it)
        # Todo 一旦插入、删除、替换的对象中含有标点,那么不与其它编辑合并
        # Todo 缺失成分标签也不与其它编辑合并
        for op, group in groupby(
            align_obj,
            lambda x: x[0][0] if x[0][0] in {"M", "T"}  else False,
        ):
            group = list(group)
            # T is always split TODO: Evaluate this
            if op == "T":
                for seq in group:
                    edits.append(seq)
            # Process D, I and S subsequence
            else:
                # Turn the processed sequence into edits
                processed = self._process_seq(group, src_tokens, tgt_tokens)
                for seq in processed:
                    edits.append(seq)

        filtered_edits = []
        i = 0
        while i < len(edits):
            e1 = edits[i][0][0]

            if i < len(edits) - 2:
                e2 = edits[i + 1][0][0]
                e3 = edits[i + 2][0][0]

                # Find "S M S" patterns
                # Ex:
                #   S     M     S
                # 冬阴功  对  外国人
                # 外国人  对  冬阴功
                if e1 == "S" and e2 == "M" and e3 == "S":
                    w1 = "".join(src_tokens[edits[i][1]: edits[i][2]])
                    w2 = "".join(tgt_tokens[edits[i][3]: edits[i][4]])
                    w3 = "".join(src_tokens[edits[i + 2][1]: edits[i + 2][2]])
                    w4 = "".join(tgt_tokens[edits[i + 2][3]: edits[i + 2][4]])
                    if min([len(w1), len(w2), len(w3), len(w4)]) == 1:
                        if w1 == w4 and w2 == w3:
                            group = [edits[i], edits[i + 1], edits[i + 2]]
                            processed = self._merge_edits(group, "T" + str(edits[i+2][2] - edits[i][1]))
                            for seq in processed:
                                filtered_edits.append(seq)
                            i += 3
                        else:
                            filtered_edits.append(edits[i])
                            i += 1
                    else:
                        if Levenshtein.distance(w1, w4) <= 1 and Levenshtein.distance(w2, w3) <= 1:
                            group = [edits[i], edits[i + 1], edits[i + 2]]
                            processed = self._merge_edits(group, "T" + str(edits[i + 2][2] - edits[i][1]))
                            for seq in processed:
                                filtered_edits.append(seq)
                            i += 3
                        else:
                            filtered_edits.append(edits[i])
                            i += 1
                # Find "D M I" or "I M D" patterns
                # Ex:
                #   D        M              I
                # 旅游 去   陌生 的   地方
                #      去   陌生 的   地方  旅游
                elif (e1 == "D" and (e2 == "M" or e2.startswith("T")) and e3 == "I") or (e1 == "I" and (e2 == "M" or e2.startswith("T")) and e3 == "D"):
                    if e1 == "D":
                        delete_token = src_tokens[edits[i][1]: edits[i][2]]
                        insert_token = tgt_tokens[edits[i + 2][3]: edits[i + 2][4]]
                    else:
                        delete_token = src_tokens[edits[i + 2][1]: edits[i + 2][2]]
                        insert_token = tgt_tokens[edits[i][3]: edits[i][4]]
                    a, b = "".join(delete_token), "".join(insert_token)
                    if len(a) < len(b):
                        a, b = b, a
                    if a not in self.punctuation and b not in self.punctuation and len(a) - len(b) <= 1:
                        if len(b) == 1:
                            if a == b:
                                group = [edits[i], edits[i + 1], edits[i + 2]]
                                processed = self._merge_edits(group, "T" + str(edits[i+2][2] - edits[i][1]))
                                for seq in processed:
                                    filtered_edits.append(seq)
                                i += 3
                            else:
                                filtered_edits.append(edits[i])
                                i += 1
                        else:
                            if Levenshtein.distance(a, b) <= 1 or (len(a) == len(b) and self._check_revolve(a, b)):
                                group = [edits[i], edits[i + 1], edits[i + 2]]
                                processed = self._merge_edits(group, "T" + str(edits[i + 2][2] - edits[i][1]))
                                for seq in processed:
                                    filtered_edits.append(seq)
                                i += 3
                            else:
                                filtered_edits.append(edits[i])
                                i += 1
                    else:
                        filtered_edits.append(edits[i])
                        i += 1
                else:
                    if e1 != "M":
                        filtered_edits.append(edits[i])
                    i += 1
            else:
                if e1 != "M":
                    filtered_edits.append(edits[i])
                i += 1
        # In rare cases with word-level tokenization, the following error can occur:
        # M     D   S       M
        # 有    時  住      上層
        # 有        時住    上層
        # Which results in S: 時住 --> 時住
        # We need to filter this case out
        second_filter = []
        for edit in filtered_edits:  # 避免因为分词错误导致的mismatch现象
            span1 = "".join(src_tokens[edit[1] : edit[2]])
            span2 = "".join(tgt_tokens[edit[3] : edit[4]])

            if span1 != span2:
                if edit[0] == "S":
                    b = True
                    # In rare cases with word-level tokenization, the following error can occur:
                    # S       I     I       M
                    # 负责任               老师
                    # 负     责任   的     老师
                    # Which results in S: 负责任 --> 负 责任 的
                    # We need to convert this edit to I: --> 的

                    # 首部有重叠
                    common_str = ""
                    tmp_new_start_1 = edit[1]
                    for i in range(edit[1], edit[2]):
                        if not span2.startswith(common_str + src_tokens[i]):
                            break
                        common_str += src_tokens[i]
                        tmp_new_start_1 = i + 1
                    new_start_1, new_start_2 = edit[1], edit[3]
                    if common_str:
                        tmp_str = ""
                        for i in range(edit[3], edit[4]):
                            tmp_str += tgt_tokens[i]
                            if tmp_str == common_str:
                                new_start_1, new_start_2 = tmp_new_start_1, i + 1
                                # second_filter.append(("S", new_start_1, edit[2], i + 1, edit[4]))
                                b = False
                                break
                            elif len(tmp_str) > len(common_str):
                                break
                    # 尾部有重叠
                    common_str = ""
                    new_end_1, new_end_2 = edit[2], edit[4]
                    tmp_new_end_1 = edit[2]
                    for i in reversed(range(new_start_1, edit[2])):
                        if not span2.endswith(src_tokens[i] + common_str):
                            break
                        common_str = src_tokens[i] + common_str
                        tmp_new_end_1 = i
                    if common_str:
                        tmp_str = ""
                        for i in reversed(range(new_start_2, edit[4])):
                            tmp_str = tgt_tokens[i] + tmp_str
                            if tmp_str == common_str:
                                new_end_1, new_end_2 = tmp_new_end_1, i
                                b = False
                                break
                            elif len(tmp_str) > len(common_str):
                                break
                    if b:
                        second_filter.append(edit)
                    else:
                        if new_start_1 == new_end_1:
                            new_edit = ("I", new_start_1, new_end_1, new_start_2, new_end_2)
                        elif new_start_2 == new_end_2:
                            new_edit = ("D", new_start_1, new_end_1, new_start_2, new_end_2)
                        else:
                            new_edit = ("S", new_start_1, new_end_1, new_start_2, new_end_2)
                        second_filter.append(new_edit)
                else:
                    second_filter.append(edit)
        if verbose:
            print("========== Parallels ==========")
            print("".join(src_tokens))
            print("".join(tgt_tokens))
            print("========== Results ==========")
            for edit in second_filter:
                op = edit[0]
                s = " ".join(src_tokens[edit[1]: edit[2]])
                t = " ".join(tgt_tokens[edit[3]: edit[4]])
                print(f"{op}:\t{s}\t-->\t{t}")
            print("========== Infos ==========")
            print(str(src))
            print(str(tgt))
        return second_filter

if __name__ == "__main__":
    tokenizer = Tokenizer("char")
    semantic_dict, semantic_class = read_cilin()
    confusion_dict = read_confusion()
    alignment = Alignment(semantic_dict, confusion_dict)
    sents = [
        "所 以 印 度 对 全 世 界 人 没 有 说 服 不 要 吃 牛 肉 。".replace(
            " ", ""),
        "所 以 印 度 没 有 说 服 全 世 界 人 不 要 吃 牛 肉 。".replace(
            " ", "")]
    src, tgt = tokenizer(sents)
    align_obj = alignment(src, tgt)
    m = Merger()
    m(align_obj, src, tgt, verbose=True)