File size: 1,721 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import CMBDataset
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.utils.text_postprocessors import multiple_select_postprocess


cmb_datasets = []
for split in ["val", "test"]:
    cmb_reader_cfg = dict(
        input_columns=["exam_type", "exam_class", "question_type", "question", "option_str"],
        output_column="answer",
        train_split=split,
        test_split=split,
    )

    cmb_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
                round=[
                    dict(
                        role="HUMAN",
                        prompt=f"以下是中国{{exam_type}}中{{exam_class}}考试的一道{{question_type}},不需要做任何分析和解释,直接输出答案选项。\n{{question}}\n{{option_str}} \n 答案: ",
                    ),
                    dict(role="BOT", prompt="{answer}"),
                ],
            ),
        ),
        retriever=dict(type=ZeroRetriever),
        inferencer=dict(type=GenInferencer, max_out_len=10),
    )

    cmb_eval_cfg = dict(
        evaluator=dict(type=AccEvaluator),
        pred_postprocessor=dict(type=multiple_select_postprocess),
    )

    cmb_datasets.append(
        dict(
            abbr="cmb" if split == "val" else "cmb_test",
            type=CMBDataset,
            path="./data/CMB/",
            reader_cfg=cmb_reader_cfg,
            infer_cfg=cmb_infer_cfg,
            eval_cfg=cmb_eval_cfg,
        )
    )