File size: 4,846 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets.OpenFinData import OpenFinDataDataset, OpenFinDataKWEvaluator
from opencompass.utils.text_postprocessors import last_capital_postprocess

OpenFinData_datasets = []
OpenFinData_3choices_list = ['emotion_identification', 'entity_disambiguation', 'financial_facts']
OpenFinData_4choices_list = ['data_inspection', 'financial_terminology', 'metric_calculation', 'value_extraction']
OpenFinData_5choices_list = ['intent_understanding']
OpenFinData_keyword_list = ['entity_recognition']
OpenFinData_all_list = OpenFinData_3choices_list + OpenFinData_4choices_list + OpenFinData_5choices_list + OpenFinData_keyword_list

OpenFinData_eval_cfg = dict(evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=last_capital_postprocess))
OpenFinData_KW_eval_cfg = dict(evaluator=dict(type=OpenFinDataKWEvaluator))

for _name in OpenFinData_all_list:
    if _name in OpenFinData_3choices_list:
        OpenFinData_infer_cfg = dict(
            ice_template=dict(type=PromptTemplate, template=dict(begin="</E>", round=[
                        dict(role="HUMAN", prompt=f"{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\n答案: "),
                        dict(role="BOT", prompt="{answer}")]),
                        ice_token="</E>"), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer))

        OpenFinData_datasets.append(
            dict(
                type=OpenFinDataDataset,
                path="./data/openfindata_release",
                name=_name,
                abbr="OpenFinData-" + _name,
                reader_cfg=dict(
                    input_columns=["question", "A", "B", "C"],
                    output_column="answer"),
                infer_cfg=OpenFinData_infer_cfg,
                eval_cfg=OpenFinData_eval_cfg,
            ))

    if _name in OpenFinData_4choices_list:
        OpenFinData_infer_cfg = dict(
            ice_template=dict(type=PromptTemplate, template=dict(begin="</E>", round=[
                        dict(role="HUMAN", prompt=f"{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "),
                        dict(role="BOT", prompt="{answer}")]),
                        ice_token="</E>"), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer))

        OpenFinData_datasets.append(
            dict(
                type=OpenFinDataDataset,
                path="./data/openfindata_release",
                name=_name,
                abbr="OpenFinData-" + _name,
                reader_cfg=dict(
                    input_columns=["question", "A", "B", "C", "D"],
                    output_column="answer"),
                infer_cfg=OpenFinData_infer_cfg,
                eval_cfg=OpenFinData_eval_cfg,
            ))

    if _name in OpenFinData_5choices_list:
        OpenFinData_infer_cfg = dict(
            ice_template=dict(type=PromptTemplate, template=dict(begin="</E>", round=[
                        dict(role="HUMAN", prompt=f"{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nE. {{E}}\n答案: "),
                        dict(role="BOT", prompt="{answer}")]),
                        ice_token="</E>"), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer))

        OpenFinData_datasets.append(
            dict(
                type=OpenFinDataDataset,
                path="./data/openfindata_release",
                name=_name,
                abbr="OpenFinData-" + _name,
                reader_cfg=dict(
                    input_columns=["question", "A", "B", "C", "D", "E"],
                    output_column="answer"),
                infer_cfg=OpenFinData_infer_cfg,
                eval_cfg=OpenFinData_eval_cfg,
            ))

    if _name in OpenFinData_keyword_list:
        OpenFinData_infer_cfg = dict(
            ice_template=dict(type=PromptTemplate, template=dict(begin="</E>", round=[
                        dict(role="HUMAN", prompt=f"{{question}}\n答案: "),
                        dict(role="BOT", prompt="{answer}")]),
                        ice_token="</E>"), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer))

        OpenFinData_datasets.append(
            dict(
                type=OpenFinDataDataset,
                path="./data/openfindata_release",
                name=_name,
                abbr="OpenFinData-" + _name,
                reader_cfg=dict(
                    input_columns=["question"],
                    output_column="answer"),
                infer_cfg=OpenFinData_infer_cfg,
                eval_cfg=OpenFinData_KW_eval_cfg,
            ))

del _name