File size: 8,136 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""Topk Retriever."""

import copy
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Union

import numpy as np
import torch
import tqdm
from sentence_transformers import SentenceTransformer
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, BatchEncoding, PreTrainedTokenizerBase
from transformers.file_utils import PaddingStrategy

from opencompass.openicl.icl_dataset_reader import DatasetEncoder
from opencompass.openicl.icl_retriever import BaseRetriever
from opencompass.openicl.utils.logging import get_logger
from opencompass.registry import ICL_RETRIEVERS

logger = get_logger(__name__)


@ICL_RETRIEVERS.register_module()
class TopkRetriever(BaseRetriever):
    """Base class for Topk In-context Learning Retriever, implemented with
    basic knn. SentenceTransformer is used to calculate embeddings. Faiss is
    used to do the nearest neighbor search.

    Args:
        dataset (`BaseDataset`): Any BaseDataset instances.
            Attributes of ``reader``, ``train`` and ``test`` will be used.
        ice_separator (`Optional[str]`): The separator between each in-context
            example template when origin `PromptTemplate` is provided. Defaults
            to '\n'.
        ice_eos_token (`Optional[str]`): The end of sentence token for
            in-context example template when origin `PromptTemplate` is
            provided. Defaults to '\n'.
        ice_num (`Optional[int]`): The number of in-context example template
            when origin `PromptTemplate` is provided. Defaults to 1.
        sentence_transformers_model_name (`Optional[str]`): The name of the
            sentence transformers model. Defaults to 'all-mpnet-base-v2'.
        tokenizer_name (`Optional[str]`): The name of the tokenizer. Defaults
            to 'gpt2-xl'.
        batch_size (`Optional[int]`): The batch size for the dataloader.
            Defaults to 1.
    """
    model = None

    def __init__(self,
                 dataset,
                 ice_separator: Optional[str] = '\n',
                 ice_eos_token: Optional[str] = '\n',
                 ice_num: Optional[int] = 1,
                 sentence_transformers_model_name: Optional[
                     str] = 'all-mpnet-base-v2',
                 tokenizer_name: Optional[str] = 'gpt2-xl',
                 batch_size: Optional[int] = 1) -> None:
        super().__init__(dataset, ice_separator, ice_eos_token, ice_num)
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.batch_size = batch_size
        self.tokenizer_name = tokenizer_name
        gen_datalist = self.dataset_reader.generate_input_field_corpus(
            self.test_ds)

        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        self.tokenizer.padding_side = 'right'

        self.encode_dataset = DatasetEncoder(gen_datalist,
                                             tokenizer=self.tokenizer)
        co = DataCollatorWithPaddingAndCuda(tokenizer=self.tokenizer,
                                            device=self.device)
        self.dataloader = DataLoader(self.encode_dataset,
                                     batch_size=self.batch_size,
                                     collate_fn=co)

        self.model = SentenceTransformer(sentence_transformers_model_name)

        self.model = self.model.to(self.device)
        self.model.eval()

        self.index = self.create_index()

    def create_index(self):
        import faiss

        self.select_datalist = self.dataset_reader.generate_input_field_corpus(
            self.index_ds)
        encode_datalist = DatasetEncoder(self.select_datalist,
                                         tokenizer=self.tokenizer)
        co = DataCollatorWithPaddingAndCuda(tokenizer=self.tokenizer,
                                            device=self.device)
        dataloader = DataLoader(encode_datalist,
                                batch_size=self.batch_size,
                                collate_fn=co)
        index = faiss.IndexIDMap(
            faiss.IndexFlatIP(self.model.get_sentence_embedding_dimension()))
        res_list = self.forward(dataloader,
                                process_bar=True,
                                information='Creating index for index set...')
        id_list = np.array([res['metadata']['id'] for res in res_list])
        self.embed_list = np.stack([res['embed'] for res in res_list])
        index.add_with_ids(self.embed_list, id_list)
        return index

    def knn_search(self, ice_num):
        res_list = self.forward(self.dataloader,
                                process_bar=True,
                                information='Embedding test set...')
        rtr_idx_list = [[] for _ in range(len(res_list))]
        logger.info('Retrieving data for test set...')
        for entry in tqdm.tqdm(res_list, disable=not self.is_main_process):
            idx = entry['metadata']['id']
            embed = np.expand_dims(entry['embed'], axis=0)
            near_ids = self.index.search(embed, ice_num)[1][0].tolist()
            rtr_idx_list[idx] = near_ids
        return rtr_idx_list

    def forward(self, dataloader, process_bar=False, information=''):
        res_list = []
        _dataloader = copy.deepcopy(dataloader)
        if process_bar:
            logger.info(information)
            _dataloader = tqdm.tqdm(_dataloader,
                                    disable=not self.is_main_process)
        for _, entry in enumerate(_dataloader):
            with torch.no_grad():
                metadata = entry.pop('metadata')
                raw_text = self.tokenizer.batch_decode(
                    entry['input_ids'],
                    skip_special_tokens=True,
                    verbose=False)
                res = self.model.encode(raw_text, show_progress_bar=False)
            res_list.extend([{
                'embed': r,
                'metadata': m
            } for r, m in zip(res, metadata)])
        return res_list

    def retrieve(self):
        """Retrieve the in-context example index for each test example."""
        return self.knn_search(self.ice_num)


class ListWrapper:

    def __init__(self, data: List[Any]):
        self.data = data

    def to(self, device):
        return self.data


def ignore_pad_dict(features):
    res_dict = {}
    if 'metadata' in features[0]:
        res_dict['metadata'] = ListWrapper(
            [x.pop('metadata') for x in features])
    return res_dict


@dataclass
class DataCollatorWithPaddingAndCuda:
    tokenizer: PreTrainedTokenizerBase
    device: object = None
    padding: Union[bool, str, PaddingStrategy] = True
    max_length: Optional[int] = 3000
    pad_to_multiple_of: Optional[int] = None

    def __call__(
        self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
    ) -> BatchEncoding:
        res_dict = ignore_pad_dict(features)

        has_labels = 'labels' in features[0]
        if has_labels:
            labels = [{'input_ids': x.pop('labels')} for x in features]
            labels = self.tokenizer.pad(
                labels,
                padding=True,
                max_length=self.max_length,
                pad_to_multiple_of=self.pad_to_multiple_of,
                return_attention_mask=True,
                return_tensors='pt',
                verbose=False)

        # print(features)
        batch = self.tokenizer.pad(features,
                                   padding=True,
                                   max_length=self.max_length,
                                   pad_to_multiple_of=self.pad_to_multiple_of,
                                   return_attention_mask=True,
                                   return_tensors='pt',
                                   verbose=False)

        if has_labels:
            batch['labels'] = labels.input_ids
        batch.update(res_dict)

        if self.device:
            batch = batch.to(self.device)

        return batch