Vurkty commited on
Commit
1e9cb1d
·
1 Parent(s): 6663754

First commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ src/mteb_res_v2.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,148 @@
1
  ---
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ - sentence-transformers
5
+ - transformers
6
+ - sentence-similarity
7
+ language:
8
+ - en
9
+ - zh
10
  license: apache-2.0
11
  ---
12
+
13
+ # Conan-Embedding-v2
14
+
15
+ ## What's New?
16
+
17
+ - **Performance**
18
+
19
+ Conan-Embedding-v2 has now achieved SOTA performance on the MTEB leaderboard for both Chinese and English.
20
+
21
+ - **Cross-lingual Retrieval between Chinese and English**
22
+
23
+ Conan-Embedding-v2 supports cross-lingual retrieval between Chinese and English samples.
24
+
25
+ - **Longer Context Support**
26
+
27
+ Conan-Embedding-v2 now supports a context length of 32,768 tokens.
28
+
29
+ - **Conan 1.4B Large Model Trained from Scratch**
30
+
31
+ A vocabulary and large language model trained from scratch, with a pre-trained model and vocabulary more tailored to the Embedding scenario, delivering stronger performance.
32
+
33
+ The Conan-1.4B base model will be open-sourced. Community workers can train their own Embedding models based on the Conan-1.4B base model.
34
+
35
+
36
+ ## Performance
37
+
38
+ Performance of Conan-Embedding-v2 on MTEB for Chinese and English
39
+
40
+ ![MTEB Result](./src/mteb_res_v2.png)
41
+
42
+ **English**
43
+
44
+ | Embedding TaskMertric | Class. Acc. (12) | Clust V-Meas. (11) | PairClass AP (3) | Rerank MAP (4) | Retri nDCG @ 10 (15) | STS Spear. (12) | SummSpear. (1) | Avg.(56) |
45
+ |:-----------------------:|:----------------:|:------------------:|:----------------:|:--------------:|:--------------------:|:---------------:|:--------------:|:---------:|
46
+ | bge-multilingual-gemma2 | 88.08 | 54.65 | 85.97 | 59.72 | 59.24 | 83.88 | 31.20 | 69.88 |
47
+ | e5-mistral-7b-instruct | 79.89 | 51.44 | 88.42 | 49.78 | 57.62 | 84.32 | **36.57** | 67.98 |
48
+ | gte-Qwen2-7B-instruct | 86.58 | 56.92 | 85.90 | **61.42** | 59.11 | 83.06 | 31.35 | 69.95 |
49
+ | stella-en-1.5B-v5 | 87.63 | 57.69 | 88.07 | 61.21 | 61.01 | 84.51 | 31.49 | 71.19 |
50
+ | bge-en-icl | 88.95 | 57.89 | 88.14 | 59.86 | 62.16 | 84.24 | 30.77 | 71.67 |
51
+ | NV-Embed-v2 | **90.37** | 58.46 | 88.67 | 60.65 | 62.65 | 84.31 | 30.70 | 72.31 |
52
+ | **Conan-embedding-v2** | 90.15 | **60.86** | **93.47** | 60.89 | **66.40** | **85.73** | 28.08 | **74.22** |
53
+
54
+ **Chinese**
55
+
56
+ | Embedding TaskMertric | Class.Acc. (9) | ClustV-Meas. (4) | PairClassAP (2) | RerankMAP (4) | RetrinDCG @ 10 (8) | STSSpear. (8) | Avg.(35) |
57
+ |:-----------------------:|:--------------:|:----------------:|:---------------:|:-------------:|:------------------:|:-------------:|:---------:|
58
+ | e5-mistral-7b-instruct | 72.96 | 52.30 | 72.19 | 61.86 | 61.75 | 48.34 | 59.92 |
59
+ | gte-Qwen2-1.5B-instruct | 72.53 | 54.61 | 86.91 | 68.21 | 71.86 | 60.05 | 67.12 |
60
+ | bge-multilingual-gemma2 | 75.31 | 59.30 | 86.67 | 68.28 | 73.73 | 55.19 | 67.64 |
61
+ | gte-Qwen2-7B-instruct | 75.77 | 66.06 | 87.48 | 68.92 | 75.71 | 65.20 | 71.62 |
62
+ | xiaobu-embedding-v2 | 76.53 | 65.17 | 91.87 | 72.58 | 76.50 | 64.18 | 72.36 |
63
+ | Conan-embedding-v1 | **76.77** | 66.33 | 91.66 | 72.76 | 76.67 | 63.67 | 72.50 |
64
+ | **Conan-embedding-v2** | 76.47 | **68.84** | **92.44** | **74.41** | **78.31** | **65.48** | **74.24** |
65
+
66
+
67
+ ## Model Detail
68
+
69
+ ### Model Structure
70
+
71
+ **Conan-Embedding-v2 Structure:**
72
+
73
+ ```
74
+ SentenceTransformer(
75
+ (0): Transformer({
76
+ 'max_seq_length': 32768,
77
+ 'do_lower_case': False
78
+ }) with Transformer model: ConanEmbedModel,
79
+ (1): Pooling({
80
+ 'word_embedding_dimension': 3584,
81
+ 'pooling_mode_cls_token': False,
82
+ 'pooling_mode_mean_tokens': True,
83
+ 'pooling_mode_max_tokens': False,
84
+ 'pooling_mode_mean_sqrt_len_tokens': False,
85
+ 'pooling_mode_weightedmean_tokens': False,
86
+ 'pooling_mode_lasttoken': False,
87
+ 'include_prompt': True
88
+ }),
89
+ (2): Dense({
90
+ 'in_features': 3584,
91
+ 'out_features': 3584,
92
+ 'bias': True,
93
+ 'activation_function': 'torch.nn.modules.linear.Identity'
94
+ })
95
+ )
96
+ ```
97
+
98
+ **Key Specifications of Conan-1.4B (Transformer):**
99
+
100
+ - Number of Parameters (Non-Dense-Layer): 1.48B
101
+
102
+ - Vocabulary Size: 150,000
103
+
104
+ - Number of Layers: 8
105
+
106
+ - Hidden Layer Dimension: 3584
107
+
108
+ - Number of Attention Heads (GOA): 32 for Q and 8 for KV
109
+
110
+ - Intermediate Dimension of FFN Layer: 8192
111
+
112
+ - Maximum Context Window: 32,768 Tokens
113
+
114
+ For more model details, please refer to ```model/modeling_conan.py``` and ```config.json```, or stay tuned for the upcoming open-source release of Conan-1.4B Base Model.
115
+
116
+ ### Tokenizer
117
+
118
+ We trained the Tokenizer on a large-scale multilingual dataset to build a standard BBPE(Byte-level Byte Pair Encoding) tokenizer with a vocabulary size of 150,000.
119
+
120
+ ## Technical Report
121
+
122
+ We will soon release our technical report.
123
+
124
+ ## Using Conan-Embedding-v2
125
+
126
+ Use ```/model/conan_api_client.py``` to access our test API. A sample call is as follows:
127
+
128
+ ```
129
+ from modeling_conan import ConanClient
130
+
131
+ AK = os.getenv("CONAN_AK")
132
+ SK = os.getenv("CONAN_SK")
133
+ client = ConanClient(ak=AK, sk=SK, url="https://ai.om.qq.com/api/conan/v2")
134
+ res = client.embed("Hello!")
135
+ print(res)
136
+
137
+ ```
138
+
139
+ This is a temporary calling solution. Please contact us to obtain an access token.
140
+
141
+ In the future, we will provide high-performance, cost-effective, and reliable Embedding services on Tencent Cloud.
142
+
143
+
144
+ ---
145
+
146
+ **About**
147
+
148
+ Created by the Tencent BAC Group. All rights reserved.
model/conan_api_client.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import hashlib
3
+ import random
4
+ import string
5
+ import time
6
+ import requests
7
+ import json
8
+
9
+ class ConanClient:
10
+ def __init__(self, ak, sk, url, timeout=30):
11
+ """
12
+ Initialize the Client
13
+
14
+ Args:
15
+ ak: Access Key
16
+ sk: Secret Key
17
+ url: Server URL
18
+ timeout: Request timeout in seconds (default: 30)
19
+ """
20
+ self.ak = ak
21
+ self.sk = sk
22
+ self.url = url
23
+ self.timeout = timeout
24
+
25
+ def __random_password(self, size=40, chars=None):
26
+ if chars is None:
27
+ chars = string.ascii_uppercase + string.ascii_lowercase + string.digits
28
+ random_chars = random.SystemRandom().choice
29
+ return "".join(random_chars(chars) for _ in range(size))
30
+
31
+ def __signature(self, random_str, time_stamp):
32
+ params_str = "%s:%d:%s:%s" % (self.ak, time_stamp, random_str, self.sk)
33
+ encoded_params_str = params_str.encode("utf-8")
34
+ return hashlib.md5(encoded_params_str).hexdigest()
35
+
36
+ def get_signature(self):
37
+ timestamp = int(time.time())
38
+ random_str = self.__random_password(20)
39
+ sig = self.__signature(random_str, timestamp)
40
+ params = {
41
+ "timestamp": timestamp,
42
+ "random": random_str,
43
+ "app_id": self.ak,
44
+ "sign": sig,
45
+ }
46
+ return params
47
+
48
+ def embed(self, text):
49
+ """
50
+ Embed text using the server
51
+
52
+ Args:
53
+ text: The input text to embed
54
+
55
+ Returns:
56
+ requests.Response object
57
+ """
58
+ params = self.get_signature()
59
+ params["body"] = text
60
+ params["content_id"] = f"test_{int(time.time())}"
61
+
62
+ headers = {"Content-Type": "application/json"}
63
+
64
+ rsp = requests.post(self.url, data=json.dumps(params), timeout=self.timeout, headers=headers)
65
+ result = json.loads(rsp.text)
66
+ return result
model/config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Conan-embedding-v2",
3
+ "add_eos": true,
4
+ "add_pad_token": true,
5
+ "architectures": [
6
+ "ConanEmbedModel"
7
+ ],
8
+ "attention_bias": false,
9
+ "attention_dropout": 0.0,
10
+ "auto_map": {
11
+ "AutoConfig": "configuration_conan.ConanEmbedConfig",
12
+ "AutoModel": "modeling_conan.ConanEmbedModel"
13
+ },
14
+ "bos_token_id": 0,
15
+ "do_dir": true,
16
+ "eos_token_id": 1,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 3584,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 8192,
21
+ "is_mask_instruction": true,
22
+ "mask_type": "b",
23
+ "max_position_embeddings": 32768,
24
+ "mlp_bias": false,
25
+ "model_type": "Conan-embedding-v2",
26
+ "num_attention_heads": 32,
27
+ "num_hidden_layers": 8,
28
+ "num_key_value_heads": 8,
29
+ "pad_token_id": 2,
30
+ "padding_side": "right",
31
+ "pretraining_tp": 1,
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 1000000.0,
35
+ "sentence_pooling_method": "mean",
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.41.2",
38
+ "use_cache": true,
39
+ "vocab_size": 150000
40
+ }
model/modeling_conan.py ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union, Mapping, Optional, Tuple, TypedDict, Dict, List
2
+ from functools import partial
3
+
4
+ import torch
5
+ import numpy as np
6
+ from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
7
+ from transformers.models.auto import AutoTokenizer
8
+ from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
9
+ from transformers.modeling_outputs import BaseModelOutputWithPast
10
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
11
+ from transformers import LlamaModel
12
+ from transformers.cache_utils import Cache, DynamicCache
13
+ from transformers.utils import (
14
+ add_start_docstrings_to_model_forward,
15
+ logging,
16
+ )
17
+ from tqdm.auto import tqdm
18
+ from datasets import Dataset
19
+ from torch.utils.data import DataLoader
20
+ from .configuration_conan import ConanEmbedConfig
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class ConanEmbedFeatures(TypedDict):
26
+ input_dict: torch.Tensor
27
+ attention_mask: torch.Tensor
28
+ pool_mask: torch.Tensor
29
+
30
+
31
+ def _move_to_device(maybe_tensor, device: torch.device):
32
+ if torch.is_tensor(maybe_tensor):
33
+ return maybe_tensor.to(device, non_blocking=device.type == "cuda")
34
+ elif isinstance(maybe_tensor, dict):
35
+ return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
36
+ elif isinstance(maybe_tensor, list):
37
+ return [_move_to_device(x, device) for x in maybe_tensor]
38
+ elif isinstance(maybe_tensor, tuple):
39
+ return tuple([_move_to_device(x, device) for x in maybe_tensor])
40
+ elif isinstance(maybe_tensor, Mapping):
41
+ return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
42
+ else:
43
+ return maybe_tensor
44
+
45
+
46
+ def move_to_device(sample, device: torch.device):
47
+ if device.type == "cpu":
48
+ return sample
49
+
50
+ if len(sample) == 0:
51
+ return {}
52
+ return _move_to_device(sample, device)
53
+
54
+
55
+ def input_transform_func(
56
+ tokenizer: PreTrainedTokenizerFast,
57
+ examples: Dict[str, List],
58
+ always_add_eos: bool,
59
+ max_length: int,
60
+ instruction: str,
61
+ ) -> BatchEncoding:
62
+ if always_add_eos:
63
+ examples["input_texts"] = [
64
+ instruction + input_example + tokenizer.eos_token for input_example in examples["input_texts"]
65
+ ]
66
+ print(examples["input_texts"])
67
+ batch_dict = tokenizer(
68
+ examples["input_texts"],
69
+ max_length=max_length,
70
+ padding=True,
71
+ return_token_type_ids=False,
72
+ return_tensors="pt",
73
+ truncation=True,
74
+ )
75
+ print(examples["input_texts"])
76
+ return batch_dict
77
+
78
+
79
+ class ConanEmbedModel(LlamaModel):
80
+ config_class = ConanEmbedConfig
81
+
82
+ def __init__(self, config: ConanEmbedConfig) -> None:
83
+ """
84
+ Initialize the model with a given configuration.
85
+
86
+ Args:
87
+ config (ConanEmbedConfig): The configuration for the model.
88
+ """
89
+ super().__init__(config)
90
+ for layer in self.layers:
91
+ layer.self_attn.is_causal = not config.do_dir
92
+ self._attn_implementation = "eager"
93
+ self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
94
+ self.padding_side = config.padding_side
95
+ self.is_mask_instruction = config.is_mask_instruction
96
+ self.add_eos = config.add_eos
97
+ self.mask_type = config.mask_type
98
+ self.sentence_pooling_method = config.sentence_pooling_method
99
+ if config.add_pad_token and self.tokenizer is not None:
100
+ self.add_pad_token()
101
+
102
+ def add_pad_token(self):
103
+ self.tokenizer.pad_token = self.tokenizer.eos_token
104
+ self.tokenizer.padding_side = self.padding_side
105
+
106
+ def _sentence_embedding(self, last_hidden_state, attention_mask=None):
107
+ """Use the pooling method to get the sentence embedding.
108
+
109
+ Args:
110
+ last_hidden_state (torch.Tensor): The model output's last hidden state.
111
+ attention_mask (torch.Tensor): Mask out padding tokens during pooling.
112
+
113
+ Raises:
114
+ NotImplementedError: Specified pooling method not implemented.
115
+
116
+ Returns:
117
+ torch.Tensor: The sentence embeddings.
118
+ """
119
+ if self.sentence_pooling_method == "cls":
120
+ return last_hidden_state[:, 0]
121
+ elif self.sentence_pooling_method == "mean":
122
+ s = torch.sum(last_hidden_state, dim=1)
123
+ # d = attention_mask.sum(dim=1, keepdim=True).float()
124
+ return s
125
+ elif self.sentence_pooling_method == "last_token":
126
+ left_padding = attention_mask[:, -1].sum() == attention_mask.shape[0]
127
+ if left_padding:
128
+ return last_hidden_state[:, -1]
129
+ else:
130
+ sequence_lengths = attention_mask.sum(dim=1) - 1
131
+ batch_size = last_hidden_state.shape[0]
132
+ return last_hidden_state[
133
+ torch.arange(batch_size, device=last_hidden_state.device),
134
+ sequence_lengths,
135
+ ]
136
+ else:
137
+ raise NotImplementedError(f"pooling method {self.sentence_pooling_method} not implemented")
138
+
139
+ def prepare_kwargs_from_batch(
140
+ self,
141
+ batch_dict: Dict[str, torch.Tensor],
142
+ instruction_lens: int,
143
+ device: torch.device,
144
+ ) -> ConanEmbedFeatures:
145
+ """
146
+ Prepare the batch dictionary for encoding.
147
+
148
+ Args:
149
+ batch_dict: A dictionary containing the input_ids and attention_mask.
150
+ instruction_lens: The length of the instruction.
151
+ device: The device to move the data to.
152
+
153
+ Returns:
154
+ A ConanEmbedFeatures object with the prepared input_ids and attention_mask.
155
+ """
156
+ batch_dict = move_to_device(batch_dict, device)
157
+ attention_mask = batch_dict["attention_mask"].clone() if "attention_mask" in batch_dict else None
158
+ if (
159
+ attention_mask is not None
160
+ and self.padding_side == "right"
161
+ and self.is_mask_instruction
162
+ and instruction_lens > 0
163
+ ):
164
+ # Mask out the instruction tokens for mean-pooling
165
+ attention_mask[:, :instruction_lens] = 0
166
+ features: ConanEmbedFeatures = {
167
+ "input_ids": torch.tensor(batch_dict.get("input_ids").to(batch_dict.get("input_ids")).long()),
168
+ "attention_mask": batch_dict["attention_mask"],
169
+ }
170
+ return features
171
+
172
+ @torch.no_grad()
173
+ def _do_encode(
174
+ self,
175
+ prompts: List[str],
176
+ batch_size: int = 1,
177
+ instruction: str = "",
178
+ max_length: int = 4096,
179
+ num_workers: int = 32,
180
+ return_numpy: bool = False,
181
+ ) -> Union[torch.FloatTensor, np.ndarray]:
182
+ """
183
+ Encode a list of prompts using the model.
184
+
185
+ Args:
186
+ prompts: A list of prompts to encode.
187
+ batch_size: The batch size to use for encoding. Defaults to 1.
188
+ instruction: An instruction to prepend to the prompts. Defaults to "".
189
+ max_length: The maximum length of the input_ids. Defaults to 4096.
190
+ num_workers: The number of workers to use for encoding. Defaults to 32.
191
+ return_numpy: Whether to return the output as a numpy array or a torch tensor. Defaults to False.
192
+
193
+ Returns:
194
+ A tensor or numpy array of shape (len(prompts), hidden_size) containing the encoded prompts.
195
+ """
196
+ dataset: Dataset = Dataset.from_dict({"input_texts": prompts})
197
+ dataset.set_transform(
198
+ partial(
199
+ input_transform_func,
200
+ self.tokenizer,
201
+ always_add_eos=True,
202
+ max_length=max_length,
203
+ instruction=instruction,
204
+ )
205
+ )
206
+
207
+ data_collator = DataCollatorWithPadding(self.tokenizer)
208
+ data_loader = DataLoader(
209
+ dataset,
210
+ batch_size=batch_size,
211
+ shuffle=False,
212
+ drop_last=False,
213
+ num_workers=num_workers,
214
+ collate_fn=data_collator,
215
+ pin_memory=True,
216
+ )
217
+
218
+ if self.padding_side == "right" and self.is_mask_instruction and len(instruction) > 0:
219
+ instruction_lens = len(self.tokenizer.tokenize(instruction))
220
+ else:
221
+ instruction_lens = 0
222
+
223
+ encoded_embeds: List[torch.Tensor] = []
224
+ device = next(self.parameters()).device
225
+ for batch_dict in tqdm(data_loader, desc="encoding", mininterval=10):
226
+ features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
227
+ embeds = self(**features)["sentence_embeddings"].squeeze(1)
228
+ encoded_embeds.append(embeds)
229
+ encoded_embeds = torch.cat(encoded_embeds, axis=0)
230
+ if return_numpy:
231
+ encoded_embeds = encoded_embeds.cpu().detach().numpy()
232
+ return encoded_embeds
233
+
234
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
235
+ def forward(
236
+ self,
237
+ input_ids: torch.LongTensor,
238
+ attention_mask: Optional[torch.Tensor] = None,
239
+ position_ids: Optional[torch.LongTensor] = None,
240
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
241
+ inputs_embeds: Optional[torch.FloatTensor] = None,
242
+ use_cache: Optional[bool] = None,
243
+ output_attentions: Optional[bool] = None,
244
+ output_hidden_states: Optional[bool] = None,
245
+ return_dict: Optional[bool] = None,
246
+ token_type_ids: Optional[torch.LongTensor] = None,
247
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
248
+ """
249
+ Args:
250
+ input_ids: a tensor of shape (batch_size, sequence_length)
251
+ attention_mask: a tensor of shape (batch_size, sequence_length)
252
+ position_ids: a tensor of shape (batch_size, sequence_length)
253
+ past_key_values: a list of tensors of shape (batch_size, key_length, hidden_size)
254
+ inputs_embeds: a tensor of shape (batch_size, sequence_length, hidden_size)
255
+ use_cache: a boolean indicating whether to use the cache
256
+ output_attentions: a boolean indicating whether to output the attention weights
257
+ output_hidden_states: a boolean indicating whether to output the hidden states
258
+ return_dict: a boolean indicating whether to return a dictionary
259
+
260
+ Returns:
261
+ a tuple of length 4 containing the last hidden state, the cache, the hidden states,
262
+ and the attention weights
263
+ or a BaseModelOutputWithPast object
264
+ """
265
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
266
+ output_hidden_states = (
267
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
268
+ )
269
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
270
+
271
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
272
+
273
+ # retrieve input_ids and inputs_embeds
274
+ if input_ids is not None and inputs_embeds is not None:
275
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
276
+ elif input_ids is not None:
277
+ batch_size, seq_length = input_ids.shape
278
+ elif inputs_embeds is not None:
279
+ batch_size, seq_length, _ = inputs_embeds.shape
280
+ else:
281
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
282
+
283
+ if self.gradient_checkpointing and self.training:
284
+ if use_cache:
285
+ logger.warning_once(
286
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
287
+ )
288
+ use_cache = False
289
+
290
+ past_key_values_length = 0
291
+
292
+ if use_cache:
293
+ use_legacy_cache = not isinstance(past_key_values, Cache)
294
+ if use_legacy_cache:
295
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
296
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
297
+
298
+ if position_ids is None:
299
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
300
+ position_ids = torch.arange(
301
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
302
+ )
303
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
304
+ else:
305
+ position_ids = position_ids.view(-1, seq_length).long()
306
+
307
+ if inputs_embeds is None:
308
+ inputs_embeds = self.embed_tokens(input_ids)
309
+
310
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
311
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
312
+ if is_padding_right:
313
+ raise ValueError(
314
+ "You are attempting to perform batched generation with padding_side='right'"
315
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
316
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
317
+ )
318
+
319
+ if self._attn_implementation == "flash_attention_2":
320
+ # 2d mask is passed through the layers
321
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
322
+ elif self._attn_implementation == "sdpa" and not output_attentions:
323
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
324
+ # the manual implementation that requires a 4D causal mask in all cases.
325
+ attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
326
+ else:
327
+ # 4d mask is passed through the layers
328
+ attention_mask = _prepare_4d_attention_mask(
329
+ attention_mask,
330
+ inputs_embeds.dtype,
331
+ )
332
+
333
+ hidden_states = inputs_embeds
334
+
335
+ # decoder layers
336
+ all_hidden_states = () if output_hidden_states else None
337
+ all_self_attns = () if output_attentions else None
338
+ next_decoder_cache = None
339
+
340
+ for decoder_layer in self.layers:
341
+ if output_hidden_states:
342
+ all_hidden_states += (hidden_states,)
343
+
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = self._gradient_checkpointing_func(
346
+ decoder_layer.__call__,
347
+ hidden_states,
348
+ attention_mask,
349
+ position_ids,
350
+ past_key_values,
351
+ output_attentions,
352
+ use_cache,
353
+ )
354
+ else:
355
+ layer_outputs = decoder_layer(
356
+ hidden_states,
357
+ attention_mask=attention_mask,
358
+ position_ids=position_ids,
359
+ past_key_value=past_key_values,
360
+ output_attentions=output_attentions,
361
+ use_cache=use_cache,
362
+ )
363
+
364
+ hidden_states = layer_outputs[0]
365
+
366
+ if use_cache:
367
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
368
+
369
+ if output_attentions:
370
+ all_self_attns += (layer_outputs[1],)
371
+
372
+ hidden_states = self.norm(hidden_states)
373
+
374
+ # add hidden states from the last decoder layer
375
+ if output_hidden_states:
376
+ all_hidden_states += (hidden_states,)
377
+
378
+ next_cache = None
379
+ if use_cache:
380
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
381
+
382
+ if not return_dict:
383
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
384
+
385
+ return BaseModelOutputWithPast(
386
+ last_hidden_state=hidden_states,
387
+ past_key_values=next_cache,
388
+ hidden_states=all_hidden_states,
389
+ attentions=all_self_attns,
390
+ )
391
+
392
+ @torch.no_grad()
393
+ def encode(
394
+ self,
395
+ prompts: List[str],
396
+ instruction: str = "",
397
+ max_length: int = 4096,
398
+ ) -> Dict[str, torch.Tensor]:
399
+ """
400
+ Encode a list of prompts and an instruction using the model.
401
+
402
+ Args:
403
+ prompts: A list of prompts to encode.
404
+ instruction: An instruction to prepend to the prompts. Defaults to "".
405
+ max_length: The maximum length of the input_ids. Defaults to 4096.
406
+
407
+ Returns:
408
+ A dictionary containing the sentence embeddings with key "sentence_embeddings".
409
+ """
410
+ if self.padding_side == "right" and self.is_mask_instruction and len(instruction) > 0:
411
+ instruction_lens = len(self.tokenizer.tokenize(instruction))
412
+ else:
413
+ instruction_lens = 0
414
+
415
+ device = next(self.parameters()).device
416
+ batch_dict = input_transform_func(
417
+ self.tokenizer,
418
+ {"input_texts": [prompt for prompt in prompts]},
419
+ always_add_eos=False,
420
+ max_length=max_length,
421
+ instruction=instruction,
422
+ )
423
+
424
+ features: ConanEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
425
+ outputs = self(**features)
426
+
427
+ embeds = self._sentence_embedding(outputs.last_hidden_state)
428
+ return {"sentence_embeddings": embeds}
429
+
430
+
431
+ # AutoModel Register
432
+ AutoModel.register(ConanEmbedConfig, ConanEmbedModel)
433
+
434
+ # Register for auto class
435
+ ConanEmbedModel.register_for_auto_class("AutoModel")
src/mteb_res_v2.png ADDED

Git LFS Details

  • SHA256: 595a49a38f628edca5c72eb1f32b774783d9a0115599c7f3b8b101a6c22ffae8
  • Pointer size: 131 Bytes
  • Size of remote file: 305 kB