Object Detection
Transformers
PyTorch
Safetensors
detr
- vision
File size: 4,001 Bytes
fc0a115
 
 
b88bab8
fae5dfa
 
b88bab8
 
fc0a115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b0136
fc0a115
c9211cb
e05068a
 
c9211cb
e05068a
b794013
3c51a1a
b794013
e05068a
 
b794013
e05068a
c9211cb
b794013
d60c294
e05068a
d60c294
e05068a
 
 
 
 
 
 
 
82b0136
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
tags:
- object-detection
- '- vision'
license: apache-2.0
base_model: facebook/detr-resnet-50
datasets:
- MohamedExperio/ICDAR2019
---

# Model Card for detr-doc-table-detection
 
# Model Details
 
detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50).
 
- **Developed by:** Taha Douaji
- **Shared by [Optional]:** Taha Douaji
- **Model type:** Object Detection 
- **Language(s) (NLP):** More information needed
- **License:** More information needed 
- **Parent Model:** [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
- **Resources for more information:**
    - [Model Demo Space](https://huggingface.co/spaces/trevbeers/pdf-table-extraction)
   - [Associated Paper](https://arxiv.org/abs/2005.12872)
 	


# Uses
 

## Direct Use
This model can be used for the task of object detection.
 
## Out-of-Scope Use
 
The model should not be used to intentionally create hostile or alienating environments for people. 
 
# Bias, Risks, and Limitations
 
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.



## Recommendations
 
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

# Training Details
 
## Training Data
 
The model was trained on ICDAR2019 Table Dataset

 
# Environmental Impact
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

 
# Citation

 
**BibTeX:**
 
 
```bibtex
@article{DBLP:journals/corr/abs-2005-12872,
  author    = {Nicolas Carion and
               Francisco Massa and
               Gabriel Synnaeve and
               Nicolas Usunier and
               Alexander Kirillov and
               Sergey Zagoruyko},
  title     = {End-to-End Object Detection with Transformers},
  journal   = {CoRR},
  volume    = {abs/2005.12872},
  year      = {2020},
  url       = {https://arxiv.org/abs/2005.12872},
  archivePrefix = {arXiv},
  eprint    = {2005.12872},
  timestamp = {Thu, 28 May 2020 17:38:09 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

 
# Model Card Authors [optional]
 
Taha Douaji in collaboration with Ezi Ozoani and the Hugging Face team


# Model Card Contact
 
More information needed
 
# How to Get Started with the Model
 
Use the code below to get started with the model.


```python
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image
import requests

image = Image.open("IMAGE_PATH")

processor = DetrImageProcessor.from_pretrained("TahaDouaji/detr-doc-table-detection")
model = DetrForObjectDetection.from_pretrained("TahaDouaji/detr-doc-table-detection")

inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)

# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]

for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
    box = [round(i, 2) for i in box.tolist()]
    print(
            f"Detected {model.config.id2label[label.item()]} with confidence "
            f"{round(score.item(), 3)} at location {box}"
    )
```