zRzRzRzRzRzRzR
commited on
Commit
·
013871a
1
Parent(s):
6913792
LICENSE
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
MIT License
|
2 |
|
3 |
-
Copyright (c) 2025
|
4 |
|
5 |
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
of this software and associated documentation files (the "Software"), to deal
|
|
|
1 |
MIT License
|
2 |
|
3 |
+
Copyright (c) 2025 Zhipu AI
|
4 |
|
5 |
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
of this software and associated documentation files (the "Software"), to deal
|
README.md
CHANGED
@@ -1,51 +1,45 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
language:
|
4 |
-
- zh
|
5 |
-
- en
|
6 |
-
pipeline_tag: text-generation
|
7 |
-
library_name: transformers
|
8 |
-
---
|
9 |
-
|
10 |
-
# GLM-4-Z1-32B-0414
|
11 |
-
|
12 |
-
## Introduction
|
13 |
-
|
14 |
-
Based on our latest technological advancements, we have trained a `GLM-4-0414` series model. During pretraining, we incorporated more code-related and reasoning-related data. In the alignment phase, we optimized the model specifically for agent capabilities. As a result, the model's performance in agent tasks such as tool use, web search, and coding has been significantly improved.
|
15 |
-
|
16 |
-
##
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
```
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"attention_mask": inputs["attention_mask"],
|
46 |
-
"max_new_tokens": 4096,
|
47 |
-
"do_sample": False,
|
48 |
-
}
|
49 |
-
out = model.generate(**generate_kwargs)
|
50 |
-
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))
|
51 |
```
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
library_name: transformers
|
8 |
+
---
|
9 |
+
|
10 |
+
# GLM-4-Z1-32B-0414
|
11 |
+
|
12 |
+
## Introduction
|
13 |
+
|
14 |
+
Based on our latest technological advancements, we have trained a `GLM-4-0414` series model. During pretraining, we incorporated more code-related and reasoning-related data. In the alignment phase, we optimized the model specifically for agent capabilities. As a result, the model's performance in agent tasks such as tool use, web search, and coding has been significantly improved.
|
15 |
+
|
16 |
+
## Inference Code
|
17 |
+
|
18 |
+
Make Sure Using `transforemrs>=4.51.3`.
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
22 |
+
|
23 |
+
MODEL_PATH = "THUDM/GLM-4-Z1-32B-0414"
|
24 |
+
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
|
27 |
+
|
28 |
+
message = [{"role": "user", "content": "Let a, b be positive real numbers such that ab = a + b + 3. Determine the range of possible values for a + b."}]
|
29 |
+
|
30 |
+
inputs = tokenizer.apply_chat_template(
|
31 |
+
message,
|
32 |
+
return_tensors="pt",
|
33 |
+
add_generation_prompt=True,
|
34 |
+
return_dict=True,
|
35 |
+
).to(model.device)
|
36 |
+
|
37 |
+
generate_kwargs = {
|
38 |
+
"input_ids": inputs["input_ids"],
|
39 |
+
"attention_mask": inputs["attention_mask"],
|
40 |
+
"max_new_tokens": 4096,
|
41 |
+
"do_sample": False,
|
42 |
+
}
|
43 |
+
out = model.generate(**generate_kwargs)
|
44 |
+
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
```
|