File size: 9,811 Bytes
896a5d4
 
 
 
 
 
8392641
896a5d4
 
ec4e14d
896a5d4
 
b0de5ff
ec4e14d
 
 
 
 
 
 
 
 
896a5d4
 
 
 
a2db412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896a5d4
 
ca5bc3f
 
cd77376
95ea503
9d30f23
02cd841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896a5d4
02cd841
 
 
 
 
 
896a5d4
02cd841
 
 
 
 
 
be64bb2
02cd841
c2a6046
896a5d4
 
 
5d15719
 
62794d3
 
896a5d4
 
 
 
5d15719
 
 
 
 
 
 
 
 
 
 
896a5d4
 
 
 
5d15719
 
 
 
 
 
 
 
 
 
896a5d4
5d15719
 
896a5d4
 
5d15719
 
 
 
 
 
 
 
 
 
 
 
 
896a5d4
 
5d15719
896a5d4
5d15719
 
 
 
 
896a5d4
5d15719
 
 
 
 
896a5d4
 
5d15719
 
 
 
 
 
 
 
 
 
 
 
 
896a5d4
 
5d15719
896a5d4
5d15719
 
 
 
 
896a5d4
5d15719
 
 
 
 
896a5d4
 
62794d3
896a5d4
5d15719
 
 
 
 
 
 
 
 
 
 
 
 
62794d3
5d15719
 
 
 
 
 
 
896a5d4
5d15719
 
 
 
896a5d4
 
5d15719
896a5d4
5d15719
 
 
 
 
 
896a5d4
5d15719
 
 
 
896a5d4
 
5d15719
896a5d4
5d15719
 
 
 
 
 
896a5d4
5d15719
 
 
 
896a5d4
 
 
c2a6046
 
02cd841
 
7d6f941
896a5d4
5d15719
62794d3
896a5d4
 
 
cd77376
896a5d4
 
 
 
 
 
 
 
 
 
89d9653
 
 
 
 
a5e12ba
896a5d4
 
 
2e27833
896a5d4
 
 
 
 
 
 
2e27833
 
a5e12ba
 
 
 
 
 
 
896a5d4
 
 
cd77376
896a5d4
 
a5e12ba
a9b1a14
 
 
 
 
 
 
 
a5e12ba
 
 
896a5d4
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
---
pipeline_tag: image-text-to-text
library_name: transformers
license: mit
---

# Skywork-R1V2

<div align="center">   
  <img src="skywork-logo.png" alt="Skywork Logo" width="500" height="400"> 
</div>

## πŸ“– [R1V2 Report](https://arxiv.org/abs/2504.16656) | πŸ’» [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | 🌐 [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V2-38B) 
<p align="center">
  <a href="https://github.com/SkyworkAI/Skywork-R1V/stargazers">
    <img src="https://img.shields.io/github/stars/SkyworkAI/Skywork-R1V" alt="GitHub Stars" />
  </a>
  <a href="https://github.com/SkyworkAI/Skywork-R1V/fork">
    <img src="https://img.shields.io/github/forks/SkyworkAI/Skywork-R1V" alt="GitHub Forks" />
  </a>
</p>



## 1. Model Introduction

Skywork-R1V2-38B is a **state-of-the-art open-source multimodal reasoning model**, achieving top-tier performance across multiple benchmarks:
- On **MMMU**, it scores **73.6%**, the **highest among all open-source models** to date.
- On **OlympiadBench**, it achieves **62.6%**, leading **by a large margin** over other open models.
- R1V2 also performs strongly on **MathVision**, **MMMU-Pro**, and **MathVista**, **rivaling proprietary commercial models**.
- Overall, R1V2 stands out as a **high-performing, open-source VLM** combining powerful **visual reasoning** and **text understanding**.

### πŸ”§ Model Details
<table>
  <thead>
    <tr>
      <th><strong>Model Name</strong></th>
      <th><strong>Vision Encoder</strong></th>
      <th><strong>Language Model</strong></th>
      <th><strong>Hugging Face Link</strong></th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>Skywork-R1V2-38B</td>
      <td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5">InternViT-6B-448px-V2_5</a></td>
      <td><a href="https://huggingface.co/Qwen/QwQ-32B">Qwen/QwQ-32B</a></td>
      <td><a href="https://huggingface.co/Skywork/Skywork-R1V2-38B">πŸ€— Link</a></td>
    </tr>
  </tbody>
</table>


---

## 2. Evaluation


<style>
  section {
    margin-bottom: 4em;
  }
  figure {
    margin: 2em 0;
    text-align: center;
  }
  figcaption {
    font-weight: bold;
    margin-top: 0.5em;
  }
  table {
    margin: 3em auto;
    width: 100%;
    border-collapse: collapse;
  }
  table th, table td {
    padding: 0.6em;
    border: 1px solid #ddd;
    text-align: center;
  }
</style>

<section>
  <figure>
    <img src="open_source.png" alt="Open Source" width="100%" />
    <figcaption>Comparison with Larger-Scale Open-Source Models</figcaption>
  </figure>
</section>

<section>
  <figure>
    <img src="properitary.png" alt="Proprietary" width="100%" />
    <figcaption>Comparison with Proprietary Models</figcaption>
  </figure>
</section>

<section>
  <figure>
<table>
  <thead>
    <tr>
      <th>Model</th>
      <th align="center"><strong>Supports Vision</strong></th>
      <th align="center" colspan="6"><strong>Text Reasoning (%)</strong></th>
      <th align="center" colspan="5"><strong>Multimodal Reasoning (%)</strong></th>
    </tr>
    <tr>
      <th></th>
      <th></th>
      <th align="center">AIME24</th>
      <th align="center">LiveCodebench</th>
      <th align="center">liveBench</th>
      <th align="center">IFEVAL</th>
      <th align="center">BFCL</th>
      <th align="center">GPQA</th>
      <th align="center">MMMU(val)</th>
      <th align="center">MathVista(mini)</th>
      <th align="center">MathVision(mini)</th>
      <th align="center">OlympiadBench</th>
      <th align="center">mmmu‑pro</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>R1V2‑38B</td>
      <td align="center">βœ…</td>
      <td align="center">78.9</td>
      <td align="center">63.6</td>
      <td align="center">73.2</td>
      <td align="center">82.9</td>
      <td align="center">66.3</td>
      <td align="center">61.6</td>
      <td align="center">73.6</td>
      <td align="center">74.0</td>
      <td align="center">49.0</td>
      <td align="center">62.6</td>
      <td align="center">52.0</td>
    </tr>
    <tr>
      <td>R1V1‑38B</td>
      <td align="center">βœ…</td>
      <td align="center">72.0</td>
      <td align="center">57.2</td>
      <td align="center">54.6</td>
      <td align="center">72.5</td>
      <td align="center">53.5</td>
      <td align="center">–</td>
      <td align="center">68.0</td>
      <td align="center">67.0</td>
      <td align="center">–</td>
      <td align="center">40.4</td>
      <td align="center">–</td>
    </tr>
    <tr>
      <td>Deepseek‑R1‑671B</td>
      <td align="center">❌</td>
      <td align="center">74.3</td>
      <td align="center">65.9</td>
      <td align="center">71.6</td>
      <td align="center">83.3</td>
      <td align="center">60.3</td>
      <td align="center">71.5</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
    </tr>
    <tr>
      <td>GPT‑o1</td>
      <td align="center">❌</td>
      <td align="center">79.8</td>
      <td align="center">63.4</td>
      <td align="center">72.2</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
    </tr>
    <tr>
      <td>GPT‑o4‑mini</td>
      <td align="center">βœ…</td>
      <td align="center">93.4</td>
      <td align="center">74.6</td>
      <td align="center">78.1</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">49.9</td>
      <td align="center">81.6</td>
      <td align="center">84.3</td>
      <td align="center">58.0</td>
      <td align="center">–</td>
      <td align="center">–</td>
    </tr>
    <tr>
      <td>Claude 3.5 Sonnet</td>
      <td align="center">βœ…</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">65.0</td>
      <td align="center">66.4</td>
      <td align="center">65.3</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
    </tr>
    <tr>
      <td>Kimi k1.5 long-cot</td>
      <td align="center">βœ…</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">70.0</td>
      <td align="center">74.9</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
    </tr>
    <tr>
      <td>Qwen2.5‑VL‑72B‑Instruct</td>
      <td align="center">βœ…</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">70.2</td>
      <td align="center">74.8</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
    </tr>
    <tr>
      <td>InternVL2.5‑78B</td>
      <td align="center">βœ…</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">70.1</td>
      <td align="center">72.3</td>
      <td align="center">–</td>
      <td align="center">33.2</td>
      <td align="center">–</td>
    </tr>
  </tbody>
</table>
  <figcaption>Evaluation Results of State-of-the-Art LLMs and VLMs</figcaption>
  </figure>
</section>





---


## 3. Usage

### 1. Clone the Repository

```shell
git clone https://github.com/SkyworkAI/Skywork-R1V.git
cd skywork-r1v/inference
```
### 2. Set Up the Environment

```shell
# For Transformers  
conda create -n r1-v python=3.10 && conda activate r1-v  
bash setup.sh  
# For vLLM  
conda create -n r1v-vllm python=3.10 && conda activate r1v-vllm  
pip install -U vllm
```

### 3. Run the Inference Script
transformers inference

```shell
CUDA_VISIBLE_DEVICES="0,1" python inference_with_transformers.py \
    --model_path path \
    --image_paths image1_path \
    --question "your question"
```

vllm inference
```shell
python inference_with_vllm.py \
    --model_path path \
    --image_paths image1_path image2_path \
    --question "your question" \
    --tensor_parallel_size 4
```

---

## 4. Citation
If you use Skywork-R1V in your research, please cite:

```
@misc{chris2025skyworkr1v2multimodalhybrid,
      title={Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning}, 
      author={Chris and Yichen Wei and Yi Peng and Xiaokun Wang and Weijie Qiu and Wei Shen and Tianyidan Xie and Jiangbo Pei and Jianhao Zhang and Yunzhuo Hao and Xuchen Song and Yang Liu and Yahui Zhou},
      year={2025},
      eprint={2504.16656},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2504.16656}, 
}
```

```
@misc{peng2025skyworkr1vpioneeringmultimodal,
      title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought}, 
      author={Yi Peng and Chris and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
      year={2025},
      eprint={2504.05599},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2504.05599}, 
}
```

*This project is released under an open-source license.*