File size: 9,811 Bytes
896a5d4 8392641 896a5d4 ec4e14d 896a5d4 b0de5ff ec4e14d 896a5d4 a2db412 896a5d4 ca5bc3f cd77376 95ea503 9d30f23 02cd841 896a5d4 02cd841 896a5d4 02cd841 be64bb2 02cd841 c2a6046 896a5d4 5d15719 62794d3 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 62794d3 896a5d4 5d15719 62794d3 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 5d15719 896a5d4 c2a6046 02cd841 7d6f941 896a5d4 5d15719 62794d3 896a5d4 cd77376 896a5d4 89d9653 a5e12ba 896a5d4 2e27833 896a5d4 2e27833 a5e12ba 896a5d4 cd77376 896a5d4 a5e12ba a9b1a14 a5e12ba 896a5d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
---
pipeline_tag: image-text-to-text
library_name: transformers
license: mit
---
# Skywork-R1V2
<div align="center">
<img src="skywork-logo.png" alt="Skywork Logo" width="500" height="400">
</div>
## π [R1V2 Report](https://arxiv.org/abs/2504.16656) | π» [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | π [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V2-38B)
<p align="center">
<a href="https://github.com/SkyworkAI/Skywork-R1V/stargazers">
<img src="https://img.shields.io/github/stars/SkyworkAI/Skywork-R1V" alt="GitHub Stars" />
</a>
<a href="https://github.com/SkyworkAI/Skywork-R1V/fork">
<img src="https://img.shields.io/github/forks/SkyworkAI/Skywork-R1V" alt="GitHub Forks" />
</a>
</p>
## 1. Model Introduction
Skywork-R1V2-38B is a **state-of-the-art open-source multimodal reasoning model**, achieving top-tier performance across multiple benchmarks:
- On **MMMU**, it scores **73.6%**, the **highest among all open-source models** to date.
- On **OlympiadBench**, it achieves **62.6%**, leading **by a large margin** over other open models.
- R1V2 also performs strongly on **MathVision**, **MMMU-Pro**, and **MathVista**, **rivaling proprietary commercial models**.
- Overall, R1V2 stands out as a **high-performing, open-source VLM** combining powerful **visual reasoning** and **text understanding**.
### π§ Model Details
<table>
<thead>
<tr>
<th><strong>Model Name</strong></th>
<th><strong>Vision Encoder</strong></th>
<th><strong>Language Model</strong></th>
<th><strong>Hugging Face Link</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Skywork-R1V2-38B</td>
<td><a href="https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5">InternViT-6B-448px-V2_5</a></td>
<td><a href="https://huggingface.co/Qwen/QwQ-32B">Qwen/QwQ-32B</a></td>
<td><a href="https://huggingface.co/Skywork/Skywork-R1V2-38B">π€ Link</a></td>
</tr>
</tbody>
</table>
---
## 2. Evaluation
<style>
section {
margin-bottom: 4em;
}
figure {
margin: 2em 0;
text-align: center;
}
figcaption {
font-weight: bold;
margin-top: 0.5em;
}
table {
margin: 3em auto;
width: 100%;
border-collapse: collapse;
}
table th, table td {
padding: 0.6em;
border: 1px solid #ddd;
text-align: center;
}
</style>
<section>
<figure>
<img src="open_source.png" alt="Open Source" width="100%" />
<figcaption>Comparison with Larger-Scale Open-Source Models</figcaption>
</figure>
</section>
<section>
<figure>
<img src="properitary.png" alt="Proprietary" width="100%" />
<figcaption>Comparison with Proprietary Models</figcaption>
</figure>
</section>
<section>
<figure>
<table>
<thead>
<tr>
<th>Model</th>
<th align="center"><strong>Supports Vision</strong></th>
<th align="center" colspan="6"><strong>Text Reasoning (%)</strong></th>
<th align="center" colspan="5"><strong>Multimodal Reasoning (%)</strong></th>
</tr>
<tr>
<th></th>
<th></th>
<th align="center">AIME24</th>
<th align="center">LiveCodebench</th>
<th align="center">liveBench</th>
<th align="center">IFEVAL</th>
<th align="center">BFCL</th>
<th align="center">GPQA</th>
<th align="center">MMMU(val)</th>
<th align="center">MathVista(mini)</th>
<th align="center">MathVision(mini)</th>
<th align="center">OlympiadBench</th>
<th align="center">mmmuβpro</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1V2β38B</td>
<td align="center">β
</td>
<td align="center">78.9</td>
<td align="center">63.6</td>
<td align="center">73.2</td>
<td align="center">82.9</td>
<td align="center">66.3</td>
<td align="center">61.6</td>
<td align="center">73.6</td>
<td align="center">74.0</td>
<td align="center">49.0</td>
<td align="center">62.6</td>
<td align="center">52.0</td>
</tr>
<tr>
<td>R1V1β38B</td>
<td align="center">β
</td>
<td align="center">72.0</td>
<td align="center">57.2</td>
<td align="center">54.6</td>
<td align="center">72.5</td>
<td align="center">53.5</td>
<td align="center">β</td>
<td align="center">68.0</td>
<td align="center">67.0</td>
<td align="center">β</td>
<td align="center">40.4</td>
<td align="center">β</td>
</tr>
<tr>
<td>DeepseekβR1β671B</td>
<td align="center">β</td>
<td align="center">74.3</td>
<td align="center">65.9</td>
<td align="center">71.6</td>
<td align="center">83.3</td>
<td align="center">60.3</td>
<td align="center">71.5</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
</tr>
<tr>
<td>GPTβo1</td>
<td align="center">β</td>
<td align="center">79.8</td>
<td align="center">63.4</td>
<td align="center">72.2</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
</tr>
<tr>
<td>GPTβo4βmini</td>
<td align="center">β
</td>
<td align="center">93.4</td>
<td align="center">74.6</td>
<td align="center">78.1</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">49.9</td>
<td align="center">81.6</td>
<td align="center">84.3</td>
<td align="center">58.0</td>
<td align="center">β</td>
<td align="center">β</td>
</tr>
<tr>
<td>Claude 3.5 Sonnet</td>
<td align="center">β
</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">65.0</td>
<td align="center">66.4</td>
<td align="center">65.3</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
</tr>
<tr>
<td>Kimi k1.5 long-cot</td>
<td align="center">β
</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">70.0</td>
<td align="center">74.9</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
</tr>
<tr>
<td>Qwen2.5βVLβ72BβInstruct</td>
<td align="center">β
</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">70.2</td>
<td align="center">74.8</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
</tr>
<tr>
<td>InternVL2.5β78B</td>
<td align="center">β
</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">β</td>
<td align="center">70.1</td>
<td align="center">72.3</td>
<td align="center">β</td>
<td align="center">33.2</td>
<td align="center">β</td>
</tr>
</tbody>
</table>
<figcaption>Evaluation Results of State-of-the-Art LLMs and VLMs</figcaption>
</figure>
</section>
---
## 3. Usage
### 1. Clone the Repository
```shell
git clone https://github.com/SkyworkAI/Skywork-R1V.git
cd skywork-r1v/inference
```
### 2. Set Up the Environment
```shell
# For Transformers
conda create -n r1-v python=3.10 && conda activate r1-v
bash setup.sh
# For vLLM
conda create -n r1v-vllm python=3.10 && conda activate r1v-vllm
pip install -U vllm
```
### 3. Run the Inference Script
transformers inference
```shell
CUDA_VISIBLE_DEVICES="0,1" python inference_with_transformers.py \
--model_path path \
--image_paths image1_path \
--question "your question"
```
vllm inference
```shell
python inference_with_vllm.py \
--model_path path \
--image_paths image1_path image2_path \
--question "your question" \
--tensor_parallel_size 4
```
---
## 4. Citation
If you use Skywork-R1V in your research, please cite:
```
@misc{chris2025skyworkr1v2multimodalhybrid,
title={Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning},
author={Chris and Yichen Wei and Yi Peng and Xiaokun Wang and Weijie Qiu and Wei Shen and Tianyidan Xie and Jiangbo Pei and Jianhao Zhang and Yunzhuo Hao and Xuchen Song and Yang Liu and Yahui Zhou},
year={2025},
eprint={2504.16656},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.16656},
}
```
```
@misc{peng2025skyworkr1vpioneeringmultimodal,
title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
author={Yi Peng and Chris and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
year={2025},
eprint={2504.05599},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.05599},
}
```
*This project is released under an open-source license.*
|