File size: 22,790 Bytes
a9a4831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Apriel model configuration"""

import math
from typing import Optional, Tuple

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import is_torch_available, logging

logger = logging.get_logger(__name__)

if is_torch_available():
    import torch

def _compute_default_rope_parameters(
    config: Optional[PretrainedConfig] = None,
    device: Optional["torch.device"] = None,
    seq_len: Optional[int] = None,
    **rope_kwargs,
) -> Tuple["torch.Tensor", float]:
    """
    Computes the inverse frequencies according to the original RoPE implementation
    Args:
        config ([`~transformers.PretrainedConfig`]):
            The model configuration.
        device (`torch.device`):
            The device to use for initialization of the inverse frequencies.
        seq_len (`int`, *optional*):
            The current sequence length. Unused for this type of RoPE.
        rope_kwargs (`Dict`, *optional*):
            BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
    Returns:
        Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
        post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
    """
    if config is not None and len(rope_kwargs) > 0:
        raise ValueError(
            "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
            f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
        )
    if len(rope_kwargs) > 0:
        base = rope_kwargs["base"]
        dim = rope_kwargs["dim"]
    elif config is not None:
        base = config.rope_theta
        partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
        head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        dim = int(head_dim * partial_rotary_factor)

    attention_factor = 1.0  # Unused in this type of RoPE

    # Compute the inverse frequencies
    inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
    return inv_freq, attention_factor

def _compute_yarn_parameters(
    config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
) -> Tuple["torch.Tensor", float]:
    """
    Computes the inverse frequencies with NTK scaling. Please refer to the
    [original paper](https://arxiv.org/abs/2309.00071)
    Args:
        config ([`~transformers.PretrainedConfig`]):
            The model configuration.
        device (`torch.device`):
            The device to use for initialization of the inverse frequencies.
        seq_len (`int`, *optional*):
            The current sequence length. Unused for this type of RoPE.
        rope_kwargs (`Dict`, *optional*):
            BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
    Returns:
        Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
        post-processing scaling factor applied to the computed cos/sin.
    """
    # No need to keep BC with yarn, unreleased when this new pattern was created.
    if len(rope_kwargs) > 0:
        raise ValueError(
            f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
        )

    base = config.rope_theta
    partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
    head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
    dim = int(head_dim * partial_rotary_factor)
        
    # Apriel: Use original max_position_embeddings instead of max_position_embeddings
    max_position_embeddings = config.rope_scaling.get("original_max_position_embeddings", config.max_position_embeddings)
    factor = config.rope_scaling["factor"]

    # Sets the attention factor as suggested in the paper
    attention_factor = config.rope_scaling.get("attention_factor")
    if attention_factor is None:
        attention_factor = 0.1 * math.log(factor) + 1.0

    # Optional config options
    # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
    beta_fast = config.rope_scaling.get("beta_fast") or 32
    beta_slow = config.rope_scaling.get("beta_slow") or 1

    # Compute the inverse frequencies
    def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
        """Inverse dimension formula to find the dimension based on the number of rotations"""
        return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))

    def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
        """Find dimension range bounds based on rotations"""
        low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
        high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
        return max(low, 0), min(high, dim - 1)

    def linear_ramp_factor(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    # Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
    # to expand the possible context length. In other words, interpolation = apply scaling factor.
    pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
    inv_freq_extrapolation = 1.0 / pos_freqs
    inv_freq_interpolation = 1.0 / (factor * pos_freqs)

    low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)

    # Get n-dimensional rotational scaling corrected for extrapolation
    inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
    inv_freq = (
        inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
        + inv_freq_extrapolation * inv_freq_extrapolation_factor
    )

    return inv_freq, attention_factor

def _check_received_keys(
    rope_type: str,
    received_keys: set,
    required_keys: set,
    optional_keys: Optional[set] = None,
    ignore_keys: Optional[set] = None,
):
    
    """Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
    # BC: "rope_type" was originally "type" -- let's check for "rope_type" when "type" is present
    if "type" in received_keys:
        received_keys -= {"type"}
        required_keys.add("rope_type")

    # Some models need to store model-specific keys, and we don't want to throw warning at them
    if ignore_keys is not None:
        received_keys -= ignore_keys

    missing_keys = required_keys - received_keys
    if missing_keys:
        raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")

    if optional_keys is not None:
        unused_keys = received_keys - required_keys - optional_keys
    else:
        unused_keys = received_keys - required_keys
    if unused_keys:
        logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")


def _validate_default_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
    rope_scaling = config.rope_scaling
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
    required_keys = {"rope_type"}
    received_keys = set(rope_scaling.keys())
    _check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys)

def _validate_yarn_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
    rope_scaling = config.rope_scaling
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None))  # BC: "rope_type" was originally "type"
    required_keys = {"rope_type", "factor", "original_max_position_embeddings"}
    optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
    received_keys = set(rope_scaling.keys())
    _check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys)

    factor = rope_scaling["factor"]
    if factor is None or not isinstance(factor, float) or factor < 1.0:
        logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")

    attention_factor = rope_scaling.get("attention_factor")
    if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
        logger.warning(
            f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
        )
    beta_fast = rope_scaling.get("beta_fast")
    if beta_fast is not None and not isinstance(beta_fast, float):
        logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
    beta_slow = rope_scaling.get("beta_slow")
    if beta_slow is not None and not isinstance(beta_slow, float):
        logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")

    if (beta_fast or 32) < (beta_slow or 1):
        logger.warning(
            f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
            f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
        )
# This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
# from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
# parameterizations, as long as the callable has the same signature.
ROPE_INIT_FUNCTIONS = {
    "default": _compute_default_rope_parameters,
    "yarn": _compute_yarn_parameters,
}

# Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
ROPE_VALIDATION_FUNCTIONS = {
    "default": _validate_default_rope_parameters,
    "yarn": _validate_yarn_parameters,
}

def rope_config_validation(config: PretrainedConfig, ignore_keys: Optional[set] = None):
    """
    Validate the RoPE config arguments, given a `PretrainedConfig` object
    """
    rope_scaling = getattr(config, "rope_scaling", None)  # not a default parameter in `PretrainedConfig`
    if rope_scaling is None:
        return

    # BC: "rope_type" was originally "type"
    rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
    validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
    if validation_fn is not None:
        validation_fn(config, ignore_keys=ignore_keys)
    else:
        logger.warning(
            f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
        )

class AprielConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`AprielModel`]. It is used to instantiate an Apriel
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Apriel-5B-Base.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Apriel model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`AprielModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Apriel-5B-Base supports up to 16384 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        pretraining_tp (`int`, *optional*, defaults to 1):
            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
            document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
            understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
            results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'yarn'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'yarn', 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_attention_heads

    ```python
    >>> from transformers import AprielModel, AprielConfig

    >>> # Initializing an Apriel Apriel-5B-Base style configuration
    >>> configuration = AprielConfig()

    >>> # Initializing a model from the Apriel-5B-Base style configuration
    >>> model = AprielModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "apriel"
    keys_to_ignore_at_inference = ["past_key_values"]
    # Default tensor parallel plan for base model `AprielModel`
    base_model_tp_plan = {
        "layers.*.self_attn.q_proj": "colwise",
        "layers.*.self_attn.k_proj": "colwise",
        "layers.*.self_attn.v_proj": "colwise",
        "layers.*.self_attn.o_proj": "rowwise",
        "layers.*.mlp.gate_proj": "colwise",
        "layers.*.mlp.up_proj": "colwise",
        "layers.*.mlp.down_proj": "rowwise",
    }
    base_model_pp_plan = {
        "embed_tokens": (["input_ids"], ["inputs_embeds"]),
        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
        "norm": (["hidden_states"], ["hidden_states"]),
    }

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        mlp_bias=False,
        head_dim=None,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.mlp_bias = mlp_bias
        self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, copy it it to 'rope_type'.
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self)

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


__all__ = ["AprielConfig"]