Update README.md
Browse files
README.md
CHANGED
@@ -1,56 +1,45 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
tags:
|
4 |
-
- bangla
|
5 |
-
- bangla-classifier
|
6 |
-
-
|
7 |
-
- text-classifier
|
8 |
-
datasets:
|
9 |
-
- SayedShaun/sentigold
|
10 |
-
language:
|
11 |
-
- bn
|
12 |
-
metrics:
|
13 |
-
- accuracy
|
14 |
-
base_model:
|
15 |
-
- csebuetnlp/banglabert
|
16 |
-
pipeline_tag: text-classification
|
17 |
-
---
|
18 |
-
|
19 |
-
# Bangla Binary Text Classifier
|
20 |
-
|
21 |
-
## Description
|
22 |
-
|
23 |
-
This is a **Bangla binary sentiment classification** model, fine-tuned on top of [`csebuetnlp/banglabert`](https://huggingface.co/csebuetnlp/banglabert). The model was trained using the [**SayedShaun/sentigold**](https://huggingface.co/datasets/SayedShaun/sentigold)
|
24 |
|
25 |
---
|
26 |
|
27 |
-
## How to Use
|
28 |
|
29 |
```python
|
30 |
from transformers import pipeline
|
31 |
|
32 |
-
pipe = pipeline("text-classification", model="SayedShaun/bangla-classifier-
|
33 |
|
34 |
-
response = pipe("
|
35 |
print(response)
|
36 |
-
# Output: [{'label': 'LABEL_0', 'score': 0.
|
37 |
-
```
|
38 |
-
|
39 |
-
## Tags
|
40 |
-
```
|
41 |
-
{"SP" :0, "WP": 1, "WN": 2, "SN": 3, "NU": 4}
|
42 |
-
|
43 |
-
SP: Strongly Positive
|
44 |
-
WP: Weakly Positive
|
45 |
-
WN: Weakly Positive Negative
|
46 |
-
SN: Strongly Negative
|
47 |
-
NU: Neutral
|
48 |
```
|
49 |
|
50 |
## Result
|
51 |
| Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
52 |
|---------------|-----------------|-----------|-----------|----------|-----------|
|
53 |
-
| 0.
|
54 |
|
55 |
|
56 |
# Source Code
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- bangla
|
5 |
+
- bangla-classifier
|
6 |
+
- binary-classifier
|
7 |
+
- text-classifier
|
8 |
+
datasets:
|
9 |
+
- SayedShaun/sentigold
|
10 |
+
language:
|
11 |
+
- bn
|
12 |
+
metrics:
|
13 |
+
- accuracy
|
14 |
+
base_model:
|
15 |
+
- csebuetnlp/banglabert
|
16 |
+
pipeline_tag: text-classification
|
17 |
+
---
|
18 |
+
|
19 |
+
# 🔍 Bangla Binary Text Classifier
|
20 |
+
|
21 |
+
## 🧠 Model Description
|
22 |
+
|
23 |
+
This is a **Bangla binary sentiment classification** model, fine-tuned on top of [`csebuetnlp/banglabert`](https://huggingface.co/csebuetnlp/banglabert). The model was trained using the [**SayedShaun/sentigold**](https://huggingface.co/datasets/SayedShaun/sentigold) dataset.
|
24 |
|
25 |
---
|
26 |
|
27 |
+
## 📦 How to Use
|
28 |
|
29 |
```python
|
30 |
from transformers import pipeline
|
31 |
|
32 |
+
pipe = pipeline("text-classification", model="SayedShaun/bangla-classifier-binary")
|
33 |
|
34 |
+
response = pipe("এটা যে এত খারাপ আগে জানতাম না।")
|
35 |
print(response)
|
36 |
+
# Output: [{'label': 'LABEL_0', 'score': 0.9765}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|
38 |
|
39 |
## Result
|
40 |
| Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
41 |
|---------------|-----------------|-----------|-----------|----------|-----------|
|
42 |
+
| 0.354600 | 0.396599 | 0.825143 | 0.812587 | 0.842483 | 0.827265 |
|
43 |
|
44 |
|
45 |
# Source Code
|