Create evaluator.py
Browse files- evaluator.py +39 -0
evaluator.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchmetrics import BLEUScore, METEOR
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
|
5 |
+
class CodeEvaluator:
|
6 |
+
def __init__(self, model_name):
|
7 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
self.model.to(self.device)
|
11 |
+
self.bleu = BLEUScore()
|
12 |
+
self.meteor = METEOR()
|
13 |
+
|
14 |
+
def evaluate(self, nl_input, target_code):
|
15 |
+
inputs = self.tokenizer(nl_input, return_tensors="pt").to(self.device)
|
16 |
+
outputs = self.model.generate(
|
17 |
+
**inputs,
|
18 |
+
)
|
19 |
+
generated_code = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
+
|
21 |
+
bleu_score = self.bleu(generated_code, target_code)
|
22 |
+
meteor_score = self.meteor(generated_code, target_code)
|
23 |
+
return bleu_score, meteor_score
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
model_name = "S-Dreamer/PyCodeT5"
|
27 |
+
evaluator = CodeEvaluator(model_name)
|
28 |
+
|
29 |
+
nl_input = "Write a Python function to calculate the factorial of a number."
|
30 |
+
target_code = """
|
31 |
+
def factorial(n):
|
32 |
+
if n == 0:
|
33 |
+
return 1
|
34 |
+
else:
|
35 |
+
return n * factorial(n-1)
|
36 |
+
"""
|
37 |
+
bleu_score, meteor_score = evaluator.evaluate(nl_input, target_code)
|
38 |
+
print(f"BLEU score: {bleu_score}")
|
39 |
+
print(f"METEOR score: {meteor_score}")
|