OTA_TextAligner / models.py
Respair's picture
Update models.py
545988c verified
from loss import *
import functools
import os
import random
import traceback
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import librosa
import numpy as np
import torch
from einops import rearrange
from scipy import ndimage
from torch.special import gammaln
import torch.nn as nn
from utils import *
class AlignmentEncoder(torch.nn.Module):
"""
Module for alignment text and mel spectrogram.
Args:
n_mel_channels: Dimension of mel spectrogram.
n_text_channels: Dimension of text embeddings.
n_att_channels: Dimension of model
temperature: Temperature to scale distance by.
Suggested to be 0.0005 when using dist_type "l2" and 15.0 when using "cosine".
condition_types: List of types for nemo.collections.tts.modules.submodules.ConditionalInput.
dist_type: Distance type to use for similarity measurement. Supports "l2" and "cosine" distance.
"""
def __init__(
self,
n_mel_channels=128,
n_text_channels=512,
n_att_channels=128,
temperature=0.0005,
condition_types=[],
dist_type="l2",
):
super().__init__()
self.temperature = temperature
# self.cond_input = ConditionalInput(n_text_channels, n_text_channels, condition_types)
self.softmax = torch.nn.Softmax(dim=3)
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.key_proj = nn.Sequential(
ConvNorm(n_text_channels, n_text_channels * 2, kernel_size=3, bias=True, w_init_gain='relu'),
torch.nn.ReLU(),
ConvNorm(n_text_channels * 2, n_att_channels, kernel_size=1, bias=True),
)
self.query_proj = nn.Sequential(
ConvNorm(n_mel_channels, n_mel_channels * 2, kernel_size=3, bias=True, w_init_gain='relu'),
torch.nn.ReLU(),
ConvNorm(n_mel_channels * 2, n_mel_channels, kernel_size=1, bias=True),
torch.nn.ReLU(),
ConvNorm(n_mel_channels, n_att_channels, kernel_size=1, bias=True),
)
if dist_type == "l2":
self.dist_fn = self.get_euclidean_dist
elif dist_type == "cosine":
self.dist_fn = self.get_cosine_dist
else:
raise ValueError(f"Unknown distance type '{dist_type}'")
@staticmethod
def _apply_mask(inputs, mask, mask_value):
if mask is None:
return
mask = rearrange(mask, "B T2 1 -> B 1 1 T2")
inputs.data.masked_fill_(mask, mask_value)
def get_dist(self, keys, queries, mask=None):
"""Calculation of distance matrix.
Args:
queries (torch.tensor): B x C1 x T1 tensor (probably going to be mel data).
keys (torch.tensor): B x C2 x T2 tensor (text data).
mask (torch.tensor): B x T2 x 1 tensor, binary mask for variable length entries and also can be used
for ignoring unnecessary elements from keys in the resulting distance matrix (True = mask element, False = leave unchanged).
Output:
dist (torch.tensor): B x T1 x T2 tensor.
"""
# B x C x T1
queries_enc = self.query_proj(queries)
# B x C x T2
keys_enc = self.key_proj(keys)
# B x 1 x T1 x T2
dist = self.dist_fn(queries_enc=queries_enc, keys_enc=keys_enc)
self._apply_mask(dist, mask, float("inf"))
return dist.squeeze(1)
@staticmethod
def get_euclidean_dist(queries_enc, keys_enc):
queries_enc = rearrange(queries_enc, "B C T1 -> B C T1 1")
keys_enc = rearrange(keys_enc, "B C T2 -> B C 1 T2")
# B x C x T1 x T2
distance = (queries_enc - keys_enc) ** 2
# B x 1 x T1 x T2
l2_dist = distance.sum(axis=1, keepdim=True)
return l2_dist
@staticmethod
def get_cosine_dist(queries_enc, keys_enc):
queries_enc = rearrange(queries_enc, "B C T1 -> B C T1 1")
keys_enc = rearrange(keys_enc, "B C T2 -> B C 1 T2")
cosine_dist = -torch.nn.functional.cosine_similarity(queries_enc, keys_enc, dim=1)
cosine_dist = rearrange(cosine_dist, "B T1 T2 -> B 1 T1 T2")
return cosine_dist
@staticmethod
def get_durations(attn_soft, text_len, spect_len):
"""Calculation of durations.
Args:
attn_soft (torch.tensor): B x 1 x T1 x T2 tensor.
text_len (torch.tensor): B tensor, lengths of text.
spect_len (torch.tensor): B tensor, lengths of mel spectrogram.
"""
attn_hard = binarize_attention_parallel(attn_soft, text_len, spect_len)
durations = attn_hard.sum(2)[:, 0, :]
assert torch.all(torch.eq(durations.sum(dim=1), spect_len))
return durations
@staticmethod
def get_mean_dist_by_durations(dist, durations, mask=None):
"""Select elements from the distance matrix for the given durations and mask and return mean distance.
Args:
dist (torch.tensor): B x T1 x T2 tensor.
durations (torch.tensor): B x T2 tensor. Dim T2 should sum to T1.
mask (torch.tensor): B x T2 x 1 binary mask for variable length entries and also can be used
for ignoring unnecessary elements in dist by T2 dim (True = mask element, False = leave unchanged).
Output:
mean_dist (torch.tensor): B x 1 tensor.
"""
batch_size, t1_size, t2_size = dist.size()
assert torch.all(torch.eq(durations.sum(dim=1), t1_size))
AlignmentEncoder._apply_mask(dist, mask, 0)
# TODO(oktai15): make it more efficient
mean_dist_by_durations = []
for dist_idx in range(batch_size):
mean_dist_by_durations.append(
torch.mean(
dist[
dist_idx,
torch.arange(t1_size),
torch.repeat_interleave(torch.arange(t2_size), repeats=durations[dist_idx]),
]
)
)
return torch.tensor(mean_dist_by_durations, dtype=dist.dtype, device=dist.device)
@staticmethod
def get_mean_distance_for_word(l2_dists, durs, start_token, num_tokens):
"""Calculates the mean distance between text and audio embeddings given a range of text tokens.
Args:
l2_dists (torch.tensor): L2 distance matrix from Aligner inference. T1 x T2 tensor.
durs (torch.tensor): List of durations corresponding to each text token. T2 tensor. Should sum to T1.
start_token (int): Index of the starting token for the word of interest.
num_tokens (int): Length (in tokens) of the word of interest.
Output:
mean_dist_for_word (float): Mean embedding distance between the word indicated and its predicted audio frames.
"""
# Need to calculate which audio frame we start on by summing all durations up to the start token's duration
start_frame = torch.sum(durs[:start_token]).data
total_frames = 0
dist_sum = 0
# Loop through each text token
for token_ind in range(start_token, start_token + num_tokens):
# Loop through each frame for the given text token
for frame_ind in range(start_frame, start_frame + durs[token_ind]):
# Recall that the L2 distance matrix is shape [spec_len, text_len]
dist_sum += l2_dists[frame_ind, token_ind]
# Update total frames so far & the starting frame for the next token
total_frames += durs[token_ind]
start_frame += durs[token_ind]
return dist_sum / total_frames
def forward(self, queries, keys, mask=None, attn_prior=None, conditioning=None):
"""Forward pass of the aligner encoder.
Args:
queries (torch.tensor): B x C1 x T1 tensor (probably going to be mel data).
keys (torch.tensor): B x C2 x T2 tensor (text data).
mask (torch.tensor): B x T2 x 1 tensor, binary mask for variable length entries (True = mask element, False = leave unchanged).
attn_prior (torch.tensor): prior for attention matrix.
conditioning (torch.tensor): B x 1 x C2 conditioning embedding
Output:
attn (torch.tensor): B x 1 x T1 x T2 attention mask. Final dim T2 should sum to 1.
attn_logprob (torch.tensor): B x 1 x T1 x T2 log-prob attention mask.
"""
# keys = self.cond_input(keys.transpose(1, 2), conditioning).transpose(1, 2)
# B x C x T1
queries_enc = self.query_proj(queries)
# B x C x T2
keys_enc = self.key_proj(keys)
# B x 1 x T1 x T2
distance = self.dist_fn(queries_enc=queries_enc, keys_enc=keys_enc)
attn = -self.temperature * distance
if attn_prior is not None:
attn = self.log_softmax(attn) + torch.log(attn_prior[:, None] + 1e-8)
attn_logprob = attn.clone()
self._apply_mask(attn, mask, -float("inf"))
attn = self.softmax(attn) # softmax along T2
return attn, attn_logprob
def get_mask_from_lengths(
lengths: Optional[torch.Tensor] = None,
x: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Constructs binary mask from a 1D torch tensor of input lengths
Args:
lengths: Optional[torch.tensor] (torch.tensor): 1D tensor with lengths
x: Optional[torch.tensor] = tensor to be used on, last dimension is for mask
Returns:
mask (torch.tensor): num_sequences x max_length binary tensor
"""
if lengths is None:
assert x is not None
return torch.ones(x.shape[-1], dtype=torch.bool, device=x.device)
else:
if x is None:
max_len = torch.max(lengths)
else:
max_len = x.shape[-1]
ids = torch.arange(0, max_len, device=lengths.device, dtype=lengths.dtype)
mask = ids < lengths.unsqueeze(1)
return mask
class AlignerModel(torch.nn.Module):
"""Speech-to-text alignment model (https://arxiv.org/pdf/2108.10447.pdf) that is used to learn alignments between mel spectrogram and text."""
def __init__(self):
# num_tokens = len(self.tokenizer.tokens)
# self.tokenizer_pad = self.tokenizer.pad
# self.tokenizer_unk = self.tokenizer.oov
super().__init__()
self.embed = nn.Embedding(214, 512)
self.alignment_encoder = AlignmentEncoder()
# self.bin_loss = BinLoss()
# self.add_bin_loss = False
# self.bin_loss_scale = 0.0
# self.bin_loss_start_ratio = cfg.bin_loss_start_ratio
# self.bin_loss_warmup_epochs = cfg.bin_loss_warmup_epochs
def forward(self, *, spec, spec_len, text, text_len, attn_prior=None):
# with torch.amp.autocast(self.device.type, enabled=False):
attn_soft, attn_logprob = self.alignment_encoder(
queries=spec,
keys=self.embed(text).transpose(1, 2),
mask=get_mask_from_lengths(text_len).unsqueeze(-1) == 0,
attn_prior=attn_prior,
)
return attn_soft, attn_logprob
# mod = AlignerModel()
# attn_soft, attn_logprob = mod(spec=mel_input,
# spec_len=mel_input_length,
# text=text_input,
# text_len=text_input_length,
# attn_prior = attn_prior)
# attn_soft.shape
# text_input, text_input_length, mel_input, mel_input_length, attn_prior