|
from loss import * |
|
import functools |
|
import os |
|
import random |
|
import traceback |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import librosa |
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
from scipy import ndimage |
|
from torch.special import gammaln |
|
import torch.nn as nn |
|
from utils import * |
|
|
|
class AlignmentEncoder(torch.nn.Module): |
|
""" |
|
Module for alignment text and mel spectrogram. |
|
|
|
Args: |
|
n_mel_channels: Dimension of mel spectrogram. |
|
n_text_channels: Dimension of text embeddings. |
|
n_att_channels: Dimension of model |
|
temperature: Temperature to scale distance by. |
|
Suggested to be 0.0005 when using dist_type "l2" and 15.0 when using "cosine". |
|
condition_types: List of types for nemo.collections.tts.modules.submodules.ConditionalInput. |
|
dist_type: Distance type to use for similarity measurement. Supports "l2" and "cosine" distance. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_mel_channels=128, |
|
n_text_channels=512, |
|
n_att_channels=128, |
|
temperature=0.0005, |
|
condition_types=[], |
|
dist_type="l2", |
|
): |
|
super().__init__() |
|
self.temperature = temperature |
|
|
|
self.softmax = torch.nn.Softmax(dim=3) |
|
self.log_softmax = torch.nn.LogSoftmax(dim=3) |
|
|
|
self.key_proj = nn.Sequential( |
|
ConvNorm(n_text_channels, n_text_channels * 2, kernel_size=3, bias=True, w_init_gain='relu'), |
|
torch.nn.ReLU(), |
|
ConvNorm(n_text_channels * 2, n_att_channels, kernel_size=1, bias=True), |
|
) |
|
|
|
self.query_proj = nn.Sequential( |
|
ConvNorm(n_mel_channels, n_mel_channels * 2, kernel_size=3, bias=True, w_init_gain='relu'), |
|
torch.nn.ReLU(), |
|
ConvNorm(n_mel_channels * 2, n_mel_channels, kernel_size=1, bias=True), |
|
torch.nn.ReLU(), |
|
ConvNorm(n_mel_channels, n_att_channels, kernel_size=1, bias=True), |
|
) |
|
if dist_type == "l2": |
|
self.dist_fn = self.get_euclidean_dist |
|
elif dist_type == "cosine": |
|
self.dist_fn = self.get_cosine_dist |
|
else: |
|
raise ValueError(f"Unknown distance type '{dist_type}'") |
|
|
|
@staticmethod |
|
def _apply_mask(inputs, mask, mask_value): |
|
if mask is None: |
|
return |
|
|
|
mask = rearrange(mask, "B T2 1 -> B 1 1 T2") |
|
inputs.data.masked_fill_(mask, mask_value) |
|
|
|
def get_dist(self, keys, queries, mask=None): |
|
"""Calculation of distance matrix. |
|
|
|
Args: |
|
queries (torch.tensor): B x C1 x T1 tensor (probably going to be mel data). |
|
keys (torch.tensor): B x C2 x T2 tensor (text data). |
|
mask (torch.tensor): B x T2 x 1 tensor, binary mask for variable length entries and also can be used |
|
for ignoring unnecessary elements from keys in the resulting distance matrix (True = mask element, False = leave unchanged). |
|
Output: |
|
dist (torch.tensor): B x T1 x T2 tensor. |
|
""" |
|
|
|
queries_enc = self.query_proj(queries) |
|
|
|
keys_enc = self.key_proj(keys) |
|
|
|
dist = self.dist_fn(queries_enc=queries_enc, keys_enc=keys_enc) |
|
|
|
self._apply_mask(dist, mask, float("inf")) |
|
|
|
return dist.squeeze(1) |
|
|
|
@staticmethod |
|
def get_euclidean_dist(queries_enc, keys_enc): |
|
queries_enc = rearrange(queries_enc, "B C T1 -> B C T1 1") |
|
keys_enc = rearrange(keys_enc, "B C T2 -> B C 1 T2") |
|
|
|
distance = (queries_enc - keys_enc) ** 2 |
|
|
|
l2_dist = distance.sum(axis=1, keepdim=True) |
|
return l2_dist |
|
|
|
@staticmethod |
|
def get_cosine_dist(queries_enc, keys_enc): |
|
queries_enc = rearrange(queries_enc, "B C T1 -> B C T1 1") |
|
keys_enc = rearrange(keys_enc, "B C T2 -> B C 1 T2") |
|
cosine_dist = -torch.nn.functional.cosine_similarity(queries_enc, keys_enc, dim=1) |
|
cosine_dist = rearrange(cosine_dist, "B T1 T2 -> B 1 T1 T2") |
|
return cosine_dist |
|
|
|
@staticmethod |
|
def get_durations(attn_soft, text_len, spect_len): |
|
"""Calculation of durations. |
|
|
|
Args: |
|
attn_soft (torch.tensor): B x 1 x T1 x T2 tensor. |
|
text_len (torch.tensor): B tensor, lengths of text. |
|
spect_len (torch.tensor): B tensor, lengths of mel spectrogram. |
|
""" |
|
attn_hard = binarize_attention_parallel(attn_soft, text_len, spect_len) |
|
durations = attn_hard.sum(2)[:, 0, :] |
|
assert torch.all(torch.eq(durations.sum(dim=1), spect_len)) |
|
return durations |
|
|
|
@staticmethod |
|
def get_mean_dist_by_durations(dist, durations, mask=None): |
|
"""Select elements from the distance matrix for the given durations and mask and return mean distance. |
|
|
|
Args: |
|
dist (torch.tensor): B x T1 x T2 tensor. |
|
durations (torch.tensor): B x T2 tensor. Dim T2 should sum to T1. |
|
mask (torch.tensor): B x T2 x 1 binary mask for variable length entries and also can be used |
|
for ignoring unnecessary elements in dist by T2 dim (True = mask element, False = leave unchanged). |
|
Output: |
|
mean_dist (torch.tensor): B x 1 tensor. |
|
""" |
|
batch_size, t1_size, t2_size = dist.size() |
|
assert torch.all(torch.eq(durations.sum(dim=1), t1_size)) |
|
|
|
AlignmentEncoder._apply_mask(dist, mask, 0) |
|
|
|
|
|
mean_dist_by_durations = [] |
|
for dist_idx in range(batch_size): |
|
mean_dist_by_durations.append( |
|
torch.mean( |
|
dist[ |
|
dist_idx, |
|
torch.arange(t1_size), |
|
torch.repeat_interleave(torch.arange(t2_size), repeats=durations[dist_idx]), |
|
] |
|
) |
|
) |
|
|
|
return torch.tensor(mean_dist_by_durations, dtype=dist.dtype, device=dist.device) |
|
|
|
@staticmethod |
|
def get_mean_distance_for_word(l2_dists, durs, start_token, num_tokens): |
|
"""Calculates the mean distance between text and audio embeddings given a range of text tokens. |
|
|
|
Args: |
|
l2_dists (torch.tensor): L2 distance matrix from Aligner inference. T1 x T2 tensor. |
|
durs (torch.tensor): List of durations corresponding to each text token. T2 tensor. Should sum to T1. |
|
start_token (int): Index of the starting token for the word of interest. |
|
num_tokens (int): Length (in tokens) of the word of interest. |
|
Output: |
|
mean_dist_for_word (float): Mean embedding distance between the word indicated and its predicted audio frames. |
|
""" |
|
|
|
start_frame = torch.sum(durs[:start_token]).data |
|
|
|
total_frames = 0 |
|
dist_sum = 0 |
|
|
|
|
|
for token_ind in range(start_token, start_token + num_tokens): |
|
|
|
for frame_ind in range(start_frame, start_frame + durs[token_ind]): |
|
|
|
dist_sum += l2_dists[frame_ind, token_ind] |
|
|
|
|
|
total_frames += durs[token_ind] |
|
start_frame += durs[token_ind] |
|
|
|
return dist_sum / total_frames |
|
|
|
def forward(self, queries, keys, mask=None, attn_prior=None, conditioning=None): |
|
"""Forward pass of the aligner encoder. |
|
|
|
Args: |
|
queries (torch.tensor): B x C1 x T1 tensor (probably going to be mel data). |
|
keys (torch.tensor): B x C2 x T2 tensor (text data). |
|
mask (torch.tensor): B x T2 x 1 tensor, binary mask for variable length entries (True = mask element, False = leave unchanged). |
|
attn_prior (torch.tensor): prior for attention matrix. |
|
conditioning (torch.tensor): B x 1 x C2 conditioning embedding |
|
Output: |
|
attn (torch.tensor): B x 1 x T1 x T2 attention mask. Final dim T2 should sum to 1. |
|
attn_logprob (torch.tensor): B x 1 x T1 x T2 log-prob attention mask. |
|
""" |
|
|
|
|
|
queries_enc = self.query_proj(queries) |
|
|
|
keys_enc = self.key_proj(keys) |
|
|
|
distance = self.dist_fn(queries_enc=queries_enc, keys_enc=keys_enc) |
|
attn = -self.temperature * distance |
|
|
|
if attn_prior is not None: |
|
attn = self.log_softmax(attn) + torch.log(attn_prior[:, None] + 1e-8) |
|
|
|
attn_logprob = attn.clone() |
|
|
|
self._apply_mask(attn, mask, -float("inf")) |
|
|
|
attn = self.softmax(attn) |
|
return attn, attn_logprob |
|
|
|
|
|
|
|
def get_mask_from_lengths( |
|
lengths: Optional[torch.Tensor] = None, |
|
x: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
"""Constructs binary mask from a 1D torch tensor of input lengths |
|
|
|
Args: |
|
lengths: Optional[torch.tensor] (torch.tensor): 1D tensor with lengths |
|
x: Optional[torch.tensor] = tensor to be used on, last dimension is for mask |
|
Returns: |
|
mask (torch.tensor): num_sequences x max_length binary tensor |
|
""" |
|
if lengths is None: |
|
assert x is not None |
|
return torch.ones(x.shape[-1], dtype=torch.bool, device=x.device) |
|
else: |
|
if x is None: |
|
max_len = torch.max(lengths) |
|
else: |
|
max_len = x.shape[-1] |
|
ids = torch.arange(0, max_len, device=lengths.device, dtype=lengths.dtype) |
|
mask = ids < lengths.unsqueeze(1) |
|
return mask |
|
|
|
class AlignerModel(torch.nn.Module): |
|
"""Speech-to-text alignment model (https://arxiv.org/pdf/2108.10447.pdf) that is used to learn alignments between mel spectrogram and text.""" |
|
|
|
def __init__(self): |
|
|
|
|
|
|
|
|
|
|
|
super().__init__() |
|
|
|
self.embed = nn.Embedding(214, 512) |
|
self.alignment_encoder = AlignmentEncoder() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, *, spec, spec_len, text, text_len, attn_prior=None): |
|
|
|
attn_soft, attn_logprob = self.alignment_encoder( |
|
queries=spec, |
|
keys=self.embed(text).transpose(1, 2), |
|
mask=get_mask_from_lengths(text_len).unsqueeze(-1) == 0, |
|
attn_prior=attn_prior, |
|
) |
|
|
|
return attn_soft, attn_logprob |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|