File size: 14,951 Bytes
05e564f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Qwen2Audio model."""
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from functools import lru_cache
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, EncoderDecoderCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import BaseModelOutput, ModelOutput, CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from transformers import AutoModel, AutoModelForCausalLM, AutoConfig, SeamlessM4Tv2Model, Qwen2ForCausalLM, Qwen2PreTrainedModel, Qwen2Model
from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2 import SeamlessM4Tv2SpeechEncoder
from .configuration_qwen2_mm import Qwen2MMConfig
from torch.nn import CrossEntropyLoss, LayerNorm
if is_flash_attn_2_available():
from transformers.modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Qwen2MMConfig"
class Qwen2AudioMultiModalProjector(nn.Module):
def __init__(self, config: Qwen2MMConfig):
super().__init__()
self.linear = nn.Linear(config.audio_config.hidden_size, config.hidden_size, bias=True)
def forward(self, audio_features):
hidden_states = self.linear(audio_features)
return hidden_states
class Qwen2MMPreTrainedModel(PreTrainedModel):
config_class = Qwen2MMConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
class Qwen2MMForConditionalGeneration(Qwen2MMPreTrainedModel, GenerationMixin):
def __init__(self, config):
super().__init__(config)
#self.audio_tower = SeamlessM4Tv2Model.from_pretrained("/mnt/diskhd/Backup/DownloadModel/seamless-m4t-v2-large/").speech_encoder
self.audio_tower = SeamlessM4Tv2SpeechEncoder(config.audio_config)
self.audio_projector = Qwen2AudioMultiModalProjector(config)
self.vocab_size = config.vocab_size
'''
tmp = AutoModelForCausalLM.from_pretrained("/mnt/diskhd/Backup/DownloadModel/Qwen2.5-7B-Instruct/")
self.language_model = tmp.model
self.lm_head = tmp.lm_head
'''
#self.language_model = AutoModelForCausalLM.from_pretrained("/mnt/diskhd/Backup/DownloadModel/Qwen2.5-7B-Instruct/")#.to("cuda")
#self.language_model = Qwen2ForCausalLM(config)
self.language_model = Qwen2Model(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.padding_side = "left"
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
'''
def get_input_embeddings(self):
return self.language_model.embed_tokens
def set_input_embeddings(self, value):
self.language_model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.language_model = decoder
def get_decoder(self):
return self.language_model
'''
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
model_kwargs = super()._update_model_kwargs_for_generation(
outputs=outputs,
model_kwargs=model_kwargs,
is_encoder_decoder=is_encoder_decoder,
num_new_tokens=num_new_tokens,
)
if getattr(outputs, "rope_deltas", None) is not None:
model_kwargs["rope_deltas"] = outputs.rope_deltas
return model_kwargs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
audio_values: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
audio_grid_thw: Optional[torch.LongTensor] = None,
audio_attention_mask: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
>>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
inputs_embeds = self.language_model.embed_tokens(input_ids)
if audio_values is not None:
audio_values = audio_values.type(self.audio_tower.dtype)
audio_embeds = self.audio_tower(input_features = audio_values, attention_mask = audio_attention_mask).last_hidden_state
audio_embeds = self.audio_projector(audio_embeds)
#print("audio_embeds: ", [audio_embeds.shape, audio_grid_thw])
tmp = []
for audio_embed, audio_token_num in zip(audio_embeds, audio_grid_thw):
#print(audio_token_num)
tmp.append(audio_embed[:audio_token_num, :])
audio_embeds = torch.cat(tmp)
n_audio_tokens = (input_ids == self.config.audio_token_id).sum().item()
n_audio_features = audio_embeds.shape[0]
if n_audio_tokens != n_audio_features:
print(
f"Audio features and audio tokens do not match: tokens: {n_audio_tokens}, features {n_audio_features}"
)
audio_mask = (
(input_ids == self.config.audio_token_id)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
audio_embeds = audio_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(audio_mask, audio_embeds)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
#for name, param in self.language_model.named_parameters():
# print(f"Parameter name: {name}", f"Parameter shape: {param.shape} {param.dtype}")
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
#print("logits:", logits.shape)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
#print("shift_logits: ", shift_logits)
#print("shift_labels: ", shift_labels)
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
pixel_values_videos=None,
audio_values=None,
image_grid_thw=None,
video_grid_thw=None,
audio_grid_thw=None,
audio_attention_mask=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if cache_position[0] != 0:
pixel_values = None
pixel_values_videos = None
audio_values = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"pixel_values_videos": pixel_values_videos,
"audio_values": audio_values,
"image_grid_thw": image_grid_thw,
"video_grid_thw": video_grid_thw,
"audio_grid_thw": audio_grid_thw,
}
)
#print("model_inputs: ", model_inputs)
return model_inputs
|