File size: 7,131 Bytes
05e564f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# coding=utf-8
# Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen2Audio model configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers import CONFIG_MAPPING

import os
from typing import Union

logger = logging.get_logger(__name__)


class Qwen2SeamlessEncoderConfig(PretrainedConfig):

    model_type = "qwen2_seamless_encoder"

    def __init__(
        self,
        speech_encoder_layers=24,
        speech_encoder_attention_heads=16,
        speech_encoder_intermediate_size=4096,
        speech_encoder_hidden_act="swish",
        speech_encoder_dropout=0.0,
        add_adapter=True,
        speech_encoder_layerdrop=0.1,
        feature_projection_input_dim=160,
        adaptor_kernel_size=8,
        adaptor_stride=8,
        adaptor_dropout=0.1,
        num_adapter_layers=1,
        position_embeddings_type="relative_key",
        conv_depthwise_kernel_size=31,
        left_max_position_embeddings=64,
        right_max_position_embeddings=8,
        speech_encoder_chunk_size=20000,
        speech_encoder_left_chunk_num=128,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.speech_encoder_layers = speech_encoder_layers
        self.speech_encoder_hidden_act = speech_encoder_hidden_act
        self.speech_encoder_dropout = speech_encoder_dropout
        self.speech_encoder_attention_heads = speech_encoder_attention_heads
        self.speech_encoder_layerdrop = speech_encoder_layerdrop
        self.speech_encoder_intermediate_size = speech_encoder_intermediate_size
        self.feature_projection_input_dim = feature_projection_input_dim
        self.adaptor_kernel_size = adaptor_kernel_size
        self.adaptor_stride = adaptor_stride
        self.adaptor_dropout = adaptor_dropout
        self.num_adapter_layers = num_adapter_layers
        self.position_embeddings_type = position_embeddings_type
        self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
        self.add_adapter = add_adapter
        self.left_max_position_embeddings = left_max_position_embeddings
        self.right_max_position_embeddings = right_max_position_embeddings
        self.speech_encoder_chunk_size = speech_encoder_chunk_size
        self.speech_encoder_left_chunk_num = speech_encoder_left_chunk_num
        self.audio_path = "/mnt/diskhd/Backup/DownloadModel/seamless-m4t-v2-large/"



class Qwen2VLVisionConfig(PretrainedConfig):
    model_type = "qwen2_vl"

    def __init__(
        self,
        depth=32,
        embed_dim=1280,
        hidden_size=3584,
        hidden_act="quick_gelu",
        mlp_ratio=4,
        num_heads=16,
        in_channels=3,
        patch_size=14,
        spatial_merge_size=2,
        temporal_patch_size=2,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.depth = depth
        self.embed_dim = embed_dim
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.spatial_merge_size = spatial_merge_size
        self.temporal_patch_size = temporal_patch_size

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        if 1:#config_dict.get("model_type") == "qwen2_vl":
            config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)
        
        

class Qwen2MMConfig(PretrainedConfig):

    model_type = "qwen2_mm"
    is_composition = False

    def __init__(
        self,
        vocab_size=152064,
        hidden_size=8192,
        intermediate_size=29568,
        num_hidden_layers=80,
        num_attention_heads=64,
        num_key_value_heads=8,
        hidden_act="silu",
        max_position_embeddings=32768,
        initializer_range=0.02,
        rms_norm_eps=1e-05,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=1000000.0,
        use_sliding_window=False,
        sliding_window=4096,
        max_window_layers=80,
        attention_dropout=0.0,
        audio_config=None,
        vision_config=None,
        rope_scaling=None,
        **kwargs,
    ):
        if isinstance(vision_config, dict):
            self.vision_config = Qwen2VLVisionConfig(**vision_config)
        elif vision_config is None:
            self.vision_config = Qwen2VLVisionConfig()
            
        if isinstance(audio_config, dict):
            self.audio_config = Qwen2SeamlessEncoderConfig(**audio_config)
        elif audio_config is None:
            self.audio_config = Qwen2SeamlessEncoderConfig()

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window
        self.max_window_layers = max_window_layers

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout
        self.llm_path = "/mnt/diskhd/Backup/DownloadModel/Qwen2.5-3B-Instruct/"
        self.auto_map = {
            "AutoConfig": "configuration_qwen2_seamless.Qwen2MMConfig",
            "AutoModel": "modeling_qwen2_seamless.Qwen2SeamlessForConditionalGeneration"
        }
        self.rope_scaling = rope_scaling

        super().__init__(**kwargs)