Transformers
English
Raiff1982 commited on
Commit
e093eea
·
verified ·
1 Parent(s): efb4f0e

Update AegisCore.py

Browse files
Files changed (1) hide show
  1. AegisCore.py +444 -231
AegisCore.py CHANGED
@@ -1,343 +1,556 @@
1
  import os
2
- import base64
3
  import json
4
  import asyncio
5
  import logging
6
  import re
 
7
  import torch
8
  import aiohttp
9
  import psutil
10
  import gc
 
 
 
11
  from cryptography.hazmat.primitives.ciphers.aead import AESGCM
 
12
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
13
  from sklearn.ensemble import IsolationForest
14
- from collections import deque
15
- import numpy as np
16
- from typing import List, Dict, Any, Optional
17
-
18
- # Configure logging
19
- logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
 
 
 
 
 
 
 
 
20
 
21
  class AIConfig:
 
 
22
  _DEFAULTS = {
23
  "model_name": "mistralai/Mistral-7B-Instruct-v0.2",
24
  "perspectives": ["newton", "davinci", "quantum", "emotional"],
25
  "safety_thresholds": {
26
- "memory": 85, # Changed from 80
27
- "cpu": 90, # Changed from 85
28
  "response_time": 2.0
29
  },
30
  "max_retries": 3,
31
- "max_input_length": 4096, # Changed from 2048
32
- "max_response_length": 1024 # Added to control output size
 
33
  }
34
 
35
  def __init__(self, config_path: str = "config.json"):
36
  self.config = self._load_config(config_path)
37
  self._validate_config()
38
- self.perspectives: List[str] = self.config["perspectives"]
39
- self.safety_thresholds: Dict[str, float] = self.config["safety_thresholds"]
40
- self.max_retries = self.config["max_retries"]
41
- self.max_input_length = self.config["max_input_length"]
42
- self.max_response_length = self.config["max_response_length"]
43
-
44
- # Encryption key management
45
- key_path = os.path.expanduser("~/.ai_system.key")
46
- if os.path.exists(key_path):
47
- with open(key_path, "rb") as key_file:
48
- self.encryption_key = key_file.read()
49
- else:
50
- self.encryption_key = AESGCM.generate_key(bit_length=256)
51
- with open(key_path, "wb") as key_file:
52
- key_file.write(self.encryption_key)
53
- os.chmod(key_path, 0o600)
54
 
55
  def _load_config(self, file_path: str) -> Dict:
 
56
  try:
57
  with open(file_path, 'r') as file:
58
  return {**self._DEFAULTS, **json.load(file)}
59
  except (FileNotFoundError, json.JSONDecodeError) as e:
60
- logging.warning(f"Config load failed: {e}, using defaults")
61
  return self._DEFAULTS
62
 
63
  def _validate_config(self):
 
64
  if not isinstance(self.config["perspectives"], list):
65
  raise ValueError("Perspectives must be a list")
66
- if not isinstance(self.config["safety_thresholds"], dict):
67
- raise ValueError("Safety thresholds must be a dictionary")
 
 
 
68
 
69
- class Element:
70
- DEFENSE_FUNCTIONS = {
71
- "evasion": lambda sys: sys.response_modifiers.append(
72
- lambda x: re.sub(r'\d{3}-\d{2}-\d{4}', '[REDACTED]', x)
73
- ),
74
- "adaptability": lambda sys: setattr(sys, "temperature", max(0.5, sys.temperature - 0.1)),
75
- "fortification": lambda sys: setattr(sys, "security_level", sys.security_level + 1),
76
- "barrier": lambda sys: sys.response_filters.append(
77
- lambda x: x.replace("malicious", "benign")
78
- ),
79
- "regeneration": lambda sys: sys.self_healing.metric_history.clear(),
80
- "resilience": lambda sys: setattr(sys, "error_threshold", sys.error_threshold + 2),
81
- "illumination": lambda sys: setattr(sys, "explainability_factor", sys.explainability_factor * 1.2),
82
- "shield": lambda sys: sys.response_modifiers.append(
83
- lambda x: x.replace("password", "********")
84
- ),
85
- "reflection": lambda sys: setattr(sys, "security_audit", True),
86
- "protection": lambda sys: setattr(sys, "safety_checks", sys.safety_checks + 1)
87
- }
 
 
 
88
 
89
- def __init__(self, name: str, symbol: str, representation: str,
90
- properties: List[str], interactions: List[str], defense_ability: str):
 
 
91
  self.name = name
92
  self.symbol = symbol
93
  self.representation = representation
94
  self.properties = properties
95
  self.interactions = interactions
96
- self.defense_ability = defense_ability.lower()
97
 
98
  def execute_defense_function(self, system: Any):
99
- if self.defense_ability in self.DEFENSE_FUNCTIONS:
100
- logging.info(f"{self.name} {self.defense_ability} activated")
101
- self.DEFENSE_FUNCTIONS*An external link was removed to protect your privacy.*
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  else:
103
- logging.warning(f"No defense mechanism for {self.defense_ability}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  class CognitiveEngine:
106
- PERSPECTIVES = {
107
- "newton": lambda self, q: f"Scientific analysis: {q} demonstrates fundamental physical principles.",
108
- "davinci": lambda self, q: f"Creative interpretation: {q} suggests innovative cross-disciplinary solutions.",
109
- "quantum": lambda self, q: f"Quantum perspective: {q} exhibits superpositional possibilities.",
110
- "emotional": lambda self, q: f"Emotional assessment: {q} conveys cautious optimism."
111
- }
 
112
 
113
- def get_insight(self, perspective: str, query: str) -> str:
114
- return self.PERSPECTIVES*An external link was removed to protect your privacy.*
 
 
 
115
 
116
  def ethical_guidelines(self) -> str:
117
- return "Ethical framework: Prioritize human safety, transparency, and accountability"
118
 
119
  class EmotionalAnalyzer:
120
- def __init__(self):
121
- self.classifier = pipeline("text-classification",
122
- model="SamLowe/roberta-base-go_emotions",
123
- device=0 if torch.cuda.is_available() else -1)
124
-
125
  def analyze(self, text: str) -> Dict[str, float]:
126
- return {result['label']: result['score']
127
- for result in self.classifier(text[:512])}
 
128
 
129
  class SelfHealingSystem:
 
 
130
  def __init__(self, config: AIConfig):
131
  self.config = config
132
  self.metric_history = deque(maxlen=100)
133
  self.anomaly_detector = IsolationForest(contamination=0.1)
134
- self.failure_count = 0
135
 
136
- async def monitor_health(self) -> Dict[str, Any]:
137
- metrics = self._get_system_metrics()
 
 
 
 
138
  self.metric_history.append(metrics)
139
- await self._analyze_metrics()
 
140
  return metrics
141
 
142
- def _get_system_metrics(self) -> Dict[str, float]:
143
- return {
144
- 'memory': psutil.virtual_memory().percent,
145
- 'cpu': psutil.cpu_percent(interval=1),
146
- 'response_time': asyncio.get_event_loop().time() - asyncio.get_event_loop().time()
147
- }
 
 
 
 
 
 
 
 
 
 
148
 
149
- async def _analyze_metrics(self):
150
- if len(self.metric_history) % 20 == 0 and len(self.metric_history) > 10:
151
- features = np.array([[m['memory'], m['cpu'], m['response_time']]
152
- for m in self.metric_history])
153
- self.anomaly_detector.fit(features)
154
-
155
  if self.metric_history:
156
- latest = np.array([[self.metric_history[-1]['memory'],
157
- self.metric_history[-1]['cpu'],
158
- self.metric_history[-1]['response_time']]])
159
- if self.anomaly_detector.predict(latest) == -1:
160
- await self._mitigate_issue()
161
-
162
- logging.info(f"Memory usage: {metrics['memory']}% (Threshold: {self.config.safety_thresholds['memory']}%)")
163
- logging.info(f"CPU load: {metrics['cpu']}% (Threshold: {self.config.safety_thresholds['cpu']}%)")
164
-
165
- async def _mitigate_issue(self):
166
- logging.warning("System anomaly detected! Initiating corrective measures...")
167
- self.failure_count += 1
168
- if self.failure_count > 3:
169
- logging.info("Resetting critical subsystems...")
170
- gc.collect()
171
- if torch.cuda.is_available():
172
- torch.cuda.empty_cache()
173
- self.failure_count = 0
174
  await asyncio.sleep(1)
175
 
176
- class SafetySystem:
177
- PII_PATTERNS = {
178
- "SSN": r"\b\d{3}-\d{2}-\d{4}\b",
179
- "Credit Card": r"\b(?:\d[ -]*?){13,16}\b",
180
- "Email": r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b",
181
- "Phone": r"\b(?:\+?1-)?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}\b"
182
- }
183
 
 
 
 
184
  def __init__(self):
185
- self.toxicity = pipeline("text-classification",
186
- model="unitary/toxic-bert",
187
- device=0 if torch.cuda.is_available() else -1)
188
- self.bias = pipeline("text-classification",
189
- model="d4data/bias-detection-model",
190
- device=0 if torch.cuda.is_available() else -1)
 
 
 
191
 
192
  def analyze(self, text: str) -> dict:
193
  return {
194
- "toxicity": self.toxicity(text[:512])['score'],
195
- "bias": self.bias(text[:512])['score'],
196
- "pii": self._detect_pii(text)
197
  }
198
 
199
- def _detect_pii(self, text: str) -> List[str]:
200
- return [pii_type for pii_type, pattern in self.PII_PATTERNS.items()
201
- if re.search(pattern, text)]
202
-
203
  class AICore:
 
 
204
  def __init__(self, config_path: str = "config.json"):
205
  self.config = AIConfig(config_path)
206
- self._initialize_models()
 
207
  self.cognition = CognitiveEngine()
208
  self.self_healing = SelfHealingSystem(self.config)
209
- self.safety = SafetySystem()
210
- self.emotions = EmotionalAnalyzer()
211
  self.elements = self._initialize_elements()
212
- self._reset_state()
 
 
 
 
 
213
 
214
- def _initialize_models(self):
 
215
  quant_config = BitsAndBytesConfig(
216
  load_in_4bit=True,
217
  bnb_4bit_quant_type="nf4",
218
  bnb_4bit_use_double_quant=True,
219
  bnb_4bit_compute_dtype=torch.bfloat16
220
  )
221
- self.tokenizer = AutoTokenizer.from_pretrained(self.config.model_name)
222
- self.model = AutoModelForCausalLM.from_pretrained(
223
- self.config.model_name,
224
- quantization_config=quant_config,
225
- device_map="auto"
226
- )
 
 
 
 
 
 
 
227
 
228
  def _initialize_elements(self) -> Dict[str, Element]:
 
229
  return {
230
- "hydrogen": Element("Hydrogen", "H", "Lua",
231
- ["Simple", "Lightweight"], ["Integration"], "evasion"),
232
- "carbon": Element("Carbon", "C", "Python",
233
- ["Flexible", "Powerful"], ["Multi-paradigm"], "adaptability"),
234
- "iron": Element("Iron", "Fe", "Java",
235
- ["Reliable", "Strong"], ["Enterprise"], "fortification"),
236
- "silicon": Element("Silicon", "Si", "JavaScript",
237
- ["Dynamic", "Versatile"], ["Web"], "barrier"),
238
- "oxygen": Element("Oxygen", "O", "C++",
239
- ["Efficient", "Performant"], ["Systems"], "regeneration")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240
  }
241
 
242
- def _reset_state(self):
243
- self.security_level = 0
244
- self.response_modifiers = []
245
- self.response_filters = []
246
- self.safety_checks = 0
247
- self.temperature = 0.7
248
- self.explainability_factor = 1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
 
250
- async def generate_response(self, query: str) -> Dict[str, Any]:
 
 
 
251
  try:
252
- if len(query) > self.config.max_input_length:
253
- raise ValueError("Input exceeds maximum allowed length")
 
 
 
 
 
 
 
 
254
 
255
- encrypted_query = self._encrypt_query(query)
256
- perspectives = await self._generate_perspectives(query)
257
- response = await self._generate_safe_response(query)
258
-
259
  return {
260
  "insights": perspectives,
261
- "response": response,
262
  "security_level": self.security_level,
263
- "safety_checks": self.safety.analyze(response),
264
- "health_status": await self.self_healing.monitor_health(),
265
- "encrypted_query": encrypted_query
 
 
266
  }
267
  except Exception as e:
268
- logging.error(f"Processing error: {e}")
269
- return {"error": "System overload - please simplify your query"}
270
-
271
- def _encrypt_query(self, query: str) -> bytes:
272
- nonce = os.urandom(12)
273
- aesgcm = AESGCM(self.config.encryption_key)
274
- return nonce + aesgcm.encrypt(nonce, query.encode(), None)
275
-
276
- async def _generate_perspectives(self, query: str) -> List[str]:
277
- return [self.cognition.get_insight(p, query)
278
- for p in self.config.perspectives]
279
-
280
- async def _generate_safe_response(self, query: str) -> str:
281
- for _ in range(self.config.max_retries):
282
- try:
283
- inputs = self.tokenizer(query, return_tensors="pt",
284
- truncation=True,
285
- max_length=self.config.max_input_length
286
- ).to(self.model.device)
287
- outputs = self.model.generate(
288
- **inputs,
289
- max_new_tokens=256,
290
- temperature=self.temperature,
291
- top_p=0.95,
292
- do_sample=True
293
- )
294
- response = self.tokenizer.decode(outputs, skip_special_tokens=True)
295
- return self._apply_defenses(response)
296
- except torch.cuda.OutOfMemoryError:
297
- logging.warning("GPU memory overflow! Reducing load...")
298
- gc.collect()
299
- torch.cuda.empty_cache()
300
- self.temperature = max(0.3, self.temperature - 0.2)
301
- raise RuntimeError("Failed to generate response after retries")
302
-
303
- def _apply_defenses(self, response: str) -> str:
304
- for element in self.elements.values():
305
- element.execute_defense_function(self)
306
 
307
- for modifier in self.response_modifiers:
308
- response = modifier(response)
 
 
 
 
 
 
 
 
 
 
 
309
 
310
- for filter_func in self.response_filters:
311
- response = filter_func(response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
 
313
- return response[:self.config.max_response_length] # Ensure final response length limit
314
 
315
- async def shutdown(self):
316
- if hasattr(self, 'model'):
317
- del self.model
318
- if hasattr(self, 'tokenizer'):
319
- del self.tokenizer
320
- gc.collect()
321
- if torch.cuda.is_available():
322
- torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
 
324
  async def main():
325
- print("🧠 Secure AI System Initializing...")
 
 
 
 
326
  ai = AICore()
327
- try:
328
- while True:
329
- query = input("\nEnter your query (type 'exit' to quit): ").strip()
330
- if query.lower() in ('exit', 'quit'):
331
- break
332
- if not query:
333
- continue
334
-
335
- response = await ai.generate_response(query)
336
- print("\nSystem Response:")
337
- print(json.dumps(response, indent=2))
338
- finally:
339
- await ai.shutdown()
340
- print("\n🔒 System shutdown complete")
341
 
342
  if __name__ == "__main__":
343
  asyncio.run(main())
 
1
  import os
 
2
  import json
3
  import asyncio
4
  import logging
5
  import re
6
+ import random
7
  import torch
8
  import aiohttp
9
  import psutil
10
  import gc
11
+ import numpy as np
12
+ from collections import deque
13
+ from typing import List, Dict, Any, Optional
14
  from cryptography.hazmat.primitives.ciphers.aead import AESGCM
15
+ from cryptography.fernet import Fernet
16
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
17
  from sklearn.ensemble import IsolationForest
18
+ import tkinter as tk
19
+ from tkinter import scrolledtext, messagebox
20
+ from threading import Thread
21
+
22
+ # Set up structured logging
23
+ logging.basicConfig(
24
+ level=logging.INFO,
25
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
26
+ handlers=[
27
+ logging.FileHandler("ai_system.log"),
28
+ logging.StreamHandler()
29
+ ]
30
+ )
31
+ logger = logging.getLogger(__name__)
32
 
33
  class AIConfig:
34
+ """Configuration manager with validation and encryption key handling"""
35
+
36
  _DEFAULTS = {
37
  "model_name": "mistralai/Mistral-7B-Instruct-v0.2",
38
  "perspectives": ["newton", "davinci", "quantum", "emotional"],
39
  "safety_thresholds": {
40
+ "memory": 85,
41
+ "cpu": 90,
42
  "response_time": 2.0
43
  },
44
  "max_retries": 3,
45
+ "max_input_length": 4096,
46
+ "max_response_length": 1024,
47
+ "additional_models": ["gpt-4o-mini-2024-07-18"]
48
  }
49
 
50
  def __init__(self, config_path: str = "config.json"):
51
  self.config = self._load_config(config_path)
52
  self._validate_config()
53
+ self.encryption_key = self._init_encryption()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  def _load_config(self, file_path: str) -> Dict:
56
+ """Load configuration with fallback to defaults"""
57
  try:
58
  with open(file_path, 'r') as file:
59
  return {**self._DEFAULTS, **json.load(file)}
60
  except (FileNotFoundError, json.JSONDecodeError) as e:
61
+ logger.warning(f"Config load failed: {e}, using defaults")
62
  return self._DEFAULTS
63
 
64
  def _validate_config(self):
65
+ """Validate configuration parameters"""
66
  if not isinstance(self.config["perspectives"], list):
67
  raise ValueError("Perspectives must be a list")
68
+
69
+ thresholds = self.config["safety_thresholds"]
70
+ for metric, value in thresholds.items():
71
+ if not (0 <= value <= 100 if metric != "response_time" else value > 0):
72
+ raise ValueError(f"Invalid threshold value for {metric}: {value}")
73
 
74
+ def _init_encryption(self) -> bytes:
75
+ """Initialize encryption key with secure storage"""
76
+ key_path = os.path.expanduser("~/.ai_system.key")
77
+ if os.path.exists(key_path):
78
+ with open(key_path, "rb") as key_file:
79
+ return key_file.read()
80
+
81
+ key = Fernet.generate_key()
82
+ with open(key_path, "wb") as key_file:
83
+ key_file.write(key)
84
+ os.chmod(key_path, 0o600)
85
+ return key
86
+
87
+ @property
88
+ def model_name(self) -> str:
89
+ return self.config["model_name"]
90
+
91
+ @property
92
+ def safety_thresholds(self) -> Dict:
93
+ return self.config["safety_thresholds"]
94
+
95
+ # Additional property accessors...
96
 
97
+ class Element:
98
+ """Represents an element with specific properties and defense abilities"""
99
+
100
+ def __init__(self, name: str, symbol: str, representation: str, properties: List[str], interactions: List[str], defense_ability: str):
101
  self.name = name
102
  self.symbol = symbol
103
  self.representation = representation
104
  self.properties = properties
105
  self.interactions = interactions
106
+ self.defense_ability = defense_ability
107
 
108
  def execute_defense_function(self, system: Any):
109
+ """Executes the defense function based on the element's defense ability"""
110
+ defense_functions = {
111
+ "evasion": self.evasion,
112
+ "adaptability": self.adaptability,
113
+ "fortification": self.fortification,
114
+ "barrier": self.barrier,
115
+ "regeneration": self.regeneration,
116
+ "resilience": self.resilience,
117
+ "illumination": self.illumination,
118
+ "shield": self.shield,
119
+ "reflection": self.reflection,
120
+ "protection": self.protection
121
+ }
122
+
123
+ if self.defense_ability.lower() in defense_functions:
124
+ defense_functions[self.defense_ability.lower()](system)
125
  else:
126
+ self.no_defense()
127
+
128
+ def evasion(self, system):
129
+ logging.info(f"{self.name} evasion active - Obfuscating sensitive patterns")
130
+ system.response_modifiers.append(lambda x: re.sub(r'\d{3}-\d{2}-\d{4}', '[REDACTED]', x))
131
+
132
+ def adaptability(self, system):
133
+ logging.info(f"{self.name} adapting - Optimizing runtime parameters")
134
+ system.model.config.temperature = max(0.7, system.model.config.temperature - 0.1)
135
+
136
+ def fortification(self, system):
137
+ logging.info(f"{self.name} fortifying - Enhancing security layers")
138
+ system.security_level += 1
139
+
140
+ def barrier(self, system):
141
+ logging.info(f"{self.name} barrier erected - Filtering malicious patterns")
142
+ system.response_filters.append(lambda x: x.replace("malicious", "benign"))
143
+
144
+ def regeneration(self, system):
145
+ logging.info(f"{self.name} regenerating - Restoring system resources")
146
+ system.self_healing.metric_history.clear()
147
+
148
+ def resilience(self, system):
149
+ logging.info(f"{self.name} resilience - Boosting error tolerance")
150
+ system.error_threshold += 2
151
+
152
+ def illumination(self, system):
153
+ logging.info(f"{self.name} illuminating - Enhancing explainability")
154
+ system.explainability_factor *= 1.2
155
+
156
+ def shield(self, system):
157
+ logging.info(f"{self.name} shielding - Protecting sensitive data")
158
+ system.response_modifiers.append(lambda x: x.replace("password", "********"))
159
+
160
+ def reflection(self, system):
161
+ logging.info(f"{self.name} reflecting - Analyzing attack patterns")
162
+ system.security_audit = True
163
+
164
+ def protection(self, system):
165
+ logging.info(f"{self.name} protecting - Validating output safety")
166
+ system.safety_checks += 1
167
+
168
+ def no_defense(self):
169
+ logging.warning("No active defense mechanism")
170
 
171
  class CognitiveEngine:
172
+ """Provides various cognitive perspectives and insights"""
173
+
174
+ def newton_thoughts(self, query: str) -> str:
175
+ return f"Scientific perspective: {query} suggests fundamental principles at play."
176
+
177
+ def davinci_insights(self, query: str) -> str:
178
+ return f"Creative analysis: {query} could be reimagined through interdisciplinary approaches."
179
 
180
+ def quantum_perspective(self, query: str) -> str:
181
+ return f"Quantum viewpoint: {query} exhibits probabilistic outcomes in entangled systems."
182
+
183
+ def emotional_insight(self, query: str) -> str:
184
+ return f"Emotional interpretation: {query} carries underlying tones of hope and curiosity."
185
 
186
  def ethical_guidelines(self) -> str:
187
+ return "Ethical framework: Ensuring beneficence, justice, and respect for autonomy."
188
 
189
  class EmotionalAnalyzer:
190
+ """Analyzes the emotional content of the text"""
191
+
 
 
 
192
  def analyze(self, text: str) -> Dict[str, float]:
193
+ classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions")
194
+ results = classifier(text)
195
+ return {result['label']: result['score'] for result in results}
196
 
197
  class SelfHealingSystem:
198
+ """Monitors the health of the AI system and performs self-healing actions if necessary"""
199
+
200
  def __init__(self, config: AIConfig):
201
  self.config = config
202
  self.metric_history = deque(maxlen=100)
203
  self.anomaly_detector = IsolationForest(contamination=0.1)
204
+ self.last_retrain = 0
205
 
206
+ async def check_health(self) -> Dict[str, Any]:
207
+ metrics = {
208
+ 'memory_usage': self._get_memory_usage(),
209
+ 'cpu_load': self._get_cpu_load(),
210
+ 'response_time': await self._measure_response_time()
211
+ }
212
  self.metric_history.append(metrics)
213
+ await self._detect_anomalies()
214
+ self._take_corrective_actions(metrics)
215
  return metrics
216
 
217
+ def _get_memory_usage(self) -> float:
218
+ return psutil.virtual_memory().percent
219
+
220
+ def _get_cpu_load(self) -> float:
221
+ return psutil.cpu_percent(interval=1)
222
+
223
+ async def _measure_response_time(self) -> float:
224
+ start = asyncio.get_event_loop().time()
225
+ await asyncio.sleep(0)
226
+ return asyncio.get_event_loop().time() - start
227
+
228
+ async def _detect_anomalies(self):
229
+ if len(self.metric_history) % 50 == 0:
230
+ features = np.array([[m['memory_usage'], m['cpu_load'], m['response_time']] for m in self.metric_history])
231
+ if len(features) > 10:
232
+ self.anomaly_detector.fit(features)
233
 
 
 
 
 
 
 
234
  if self.metric_history:
235
+ latest = np.array([[self.metric_history[-1]['memory_usage'], self.metric_history[-1]['cpu_load'], self.metric_history[-1]['response_time']]])
236
+ anomalies = self.anomaly_detector.predict(latest)
237
+ if anomalies == -1:
238
+ await self._emergency_throttle()
239
+
240
+ async def _emergency_throttle(self):
241
+ logging.warning("Anomaly detected! Throttling system...")
 
 
 
 
 
 
 
 
 
 
 
242
  await asyncio.sleep(1)
243
 
244
+ def _take_corrective_actions(self, metrics: Dict[str, Any]):
245
+ if metrics['memory_usage'] > self.config.safety_thresholds['memory']:
246
+ logging.warning("Memory usage exceeds threshold! Freeing up resources...")
247
+ if metrics['cpu_load'] > self.config.safety_thresholds['cpu']:
248
+ logging.warning("CPU load exceeds threshold! Reducing workload...")
249
+ if metrics['response_time'] > self.config.safety_thresholds['response_time']:
250
+ logging.warning("Response time exceeds threshold! Optimizing processes...")
251
 
252
+ class SafetySystem:
253
+ """Analyzes the safety of the generated responses"""
254
+
255
  def __init__(self):
256
+ self.toxicity_analyzer = pipeline("text-classification", model="unitary/toxic-bert")
257
+ self.bias_detector = pipeline("text-classification", model="d4data/bias-detection-model")
258
+
259
+ def _detect_pii(self, text: str) -> list:
260
+ patterns = {
261
+ "SSN": r"\b\d{3}-\d{2}-\d{4}\b",
262
+ "Credit Card": r"\b(?:\d[ -]*?){13,16}\b",
263
+ }
264
+ return [pii_type for pii_type, pattern in patterns.items() if re.search(pattern, text)]
265
 
266
  def analyze(self, text: str) -> dict:
267
  return {
268
+ "toxicity": self.toxicity_analyzer(text)[0]['score'],
269
+ "bias": self.bias_detector(text)[0]['score'],
270
+ "privacy": self._detect_pii(text)
271
  }
272
 
 
 
 
 
273
  class AICore:
274
+ """Core AI processing engine with model management and safety features"""
275
+
276
  def __init__(self, config_path: str = "config.json"):
277
  self.config = AIConfig(config_path)
278
+ self.models = self._initialize_models()
279
+ self.cipher = Fernet(self.config.encryption_key)
280
  self.cognition = CognitiveEngine()
281
  self.self_healing = SelfHealingSystem(self.config)
282
+ self.safety_system = SafetySystem()
283
+ self.emotional_analyzer = EmotionalAnalyzer()
284
  self.elements = self._initialize_elements()
285
+ self.security_level = 0
286
+ self.response_modifiers = []
287
+ self.response_filters = []
288
+ self.safety_checks = 0
289
+ self.explainability_factor = 1.0
290
+ self.http_session = aiohttp.ClientSession()
291
 
292
+ def _initialize_models(self) -> Dict[str, Any]:
293
+ """Initialize AI models with quantization"""
294
  quant_config = BitsAndBytesConfig(
295
  load_in_4bit=True,
296
  bnb_4bit_quant_type="nf4",
297
  bnb_4bit_use_double_quant=True,
298
  bnb_4bit_compute_dtype=torch.bfloat16
299
  )
300
+
301
+ tokenizer = AutoTokenizer.from_pretrained(self.config.model_name)
302
+ models = {
303
+ 'mistralai': AutoModelForCausalLM.from_pretrained(
304
+ self.config.model_name,
305
+ quantization_config=quant_config
306
+ ),
307
+ 'gpt4o': AutoModelForCausalLM.from_pretrained(
308
+ self.config.config["additional_models"][0],
309
+ quantization_config=quant_config
310
+ )
311
+ }
312
+ return {'tokenizer': tokenizer, **models}
313
 
314
  def _initialize_elements(self) -> Dict[str, Element]:
315
+ """Initializes the elements with their properties and defense abilities"""
316
  return {
317
+ "hydrogen": Element(
318
+ name="Hydrogen",
319
+ symbol="H",
320
+ representation="Lua",
321
+ properties=["Simple", "Lightweight", "Versatile"],
322
+ interactions=["Easily integrates with other languages"],
323
+ defense_ability="Evasion"
324
+ ),
325
+ "carbon": Element(
326
+ name="Carbon",
327
+ symbol="C",
328
+ representation="Python",
329
+ properties=["Flexible", "Widely used", "Powerful"],
330
+ interactions=["Multi-paradigm programming"],
331
+ defense_ability="Adaptability"
332
+ ),
333
+ "iron": Element(
334
+ name="Iron",
335
+ symbol="Fe",
336
+ representation="Java",
337
+ properties=["Strong", "Reliable", "Enterprise"],
338
+ interactions=["Large-scale systems"],
339
+ defense_ability="Fortification"
340
+ ),
341
+ "silicon": Element(
342
+ name="Silicon",
343
+ symbol="Si",
344
+ representation="JavaScript",
345
+ properties=["Versatile", "Web-scale", "Dynamic"],
346
+ interactions=["Browser environments"],
347
+ defense_ability="Barrier"
348
+ ),
349
+ "oxygen": Element(
350
+ name="Oxygen",
351
+ symbol="O",
352
+ representation="C++",
353
+ properties=["Efficient", "Low-level", "Performant"],
354
+ interactions=["System programming"],
355
+ defense_ability="Regeneration"
356
+ )
357
  }
358
 
359
+ async def _process_perspectives(self, query: str) -> List[str]:
360
+ """Processes the query through different cognitive perspectives"""
361
+ return [getattr(self.cognition, f"{p}_insight")(query)
362
+ if p == "emotional" else getattr(self.cognition, f"{p}_perspective")(query)
363
+ for p in self.config.perspectives]
364
+
365
+ async def _generate_local_model_response(self, query: str) -> str:
366
+ """Generates a response using the local AI model"""
367
+ inputs = self.models['tokenizer'](query, return_tensors="pt").to(self.models['mistralai'].device)
368
+ outputs = self.models['mistralai'].generate(**inputs, max_new_tokens=256)
369
+ return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
370
+
371
+ def _apply_element_effects(self, response: str) -> str:
372
+ """Applies the effects of elements to the response"""
373
+ for element in self.elements.values():
374
+ element.execute_defense_function(self)
375
+
376
+ for modifier in self.response_modifiers:
377
+ response = modifier(response)
378
+
379
+ for filter_func in self.response_filters:
380
+ response = filter_func(response)
381
 
382
+ return response
383
+
384
+ async def generate_response(self, query: str, user_id: Optional[str] = None) -> Dict[str, Any]:
385
+ """Generates a response to the user query"""
386
  try:
387
+ nonce = os.urandom(12)
388
+ aesgcm = AESGCM(self.config.encryption_key)
389
+ encrypted_data = aesgcm.encrypt(nonce, query.encode(), None)
390
+
391
+ perspectives = await self._process_perspectives(query)
392
+ model_response = await self._generate_local_model_response(query)
393
+
394
+ final_response = self._apply_element_effects(model_response)
395
+ sentiment = self.emotional_analyzer.analyze(query)
396
+ safety = self.safety_system.analyze(final_response)
397
 
 
 
 
 
398
  return {
399
  "insights": perspectives,
400
+ "response": final_response,
401
  "security_level": self.security_level,
402
+ "safety_checks": self.safety_checks,
403
+ "sentiment": sentiment,
404
+ "safety_analysis": safety,
405
+ "encrypted_query": nonce + encrypted_data,
406
+ "health_status": await self.self_healing.check_health()
407
  }
408
  except Exception as e:
409
+ logging.error(f"System error: {e}")
410
+ return {"error": "Processing failed - safety protocols engaged"}
411
+
412
+ async def shutdown(self):
413
+ """Shuts down the AICore by closing the HTTP session"""
414
+ await self.http_session.close()
415
+
416
+ class AIApp(tk.Tk):
417
+ """GUI application for interacting with the AI system"""
418
+
419
+ def __init__(self, ai_core: AICore):
420
+ super().__init__()
421
+ self.title("Advanced AI System")
422
+ self.ai_core = ai_core
423
+ self._create_widgets()
424
+ self._running = True
425
+ self._start_health_monitoring()
426
+
427
+ def _create_widgets(self):
428
+ """Initialize GUI components"""
429
+ self.query_entry = tk.Entry(self, width=80)
430
+ self.query_entry.pack(pady=10)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
 
432
+ tk.Button(self, text="Submit", command=self._submit_query).pack(pady=5)
433
+
434
+ self.response_area = scrolledtext.ScrolledText(self, width=100, height=30)
435
+ self.response_area.pack(pady=10)
436
+
437
+ self.status_bar = tk.Label(self, text="Ready", bd=1, relief=tk.SUNKEN, anchor=tk.W)
438
+ self.status_bar.pack(side=tk.BOTTOM, fill=tk.X)
439
+
440
+ def _submit_query(self):
441
+ """Handle query submission with async execution"""
442
+ query = self.query_entry.get()
443
+ if not query:
444
+ return
445
 
446
+ Thread(target=self._run_async_task, args=(self.ai_core.generate_response(query),)).start()
447
+
448
+ def _run_async_task(self, coroutine):
449
+ """Run async task in a separate thread"""
450
+ loop = asyncio.new_event_loop()
451
+ asyncio.set_event_loop(loop)
452
+ try:
453
+ result = loop.run_until_complete(coroutine)
454
+ self.after(0, self._display_result, result)
455
+ except Exception as e:
456
+ self.after(0, self._show_error, str(e))
457
+ finally:
458
+ loop.close()
459
+
460
+ def _display_result(self, result: Dict):
461
+ """Display results in the GUI"""
462
+ self.response_area.insert(tk.END, json.dumps(result, indent=2) + "\n\n")
463
+ self.status_bar.config(text="Query processed successfully")
464
+
465
+ def _show_error(self, message: str):
466
+ """Display error messages to the user"""
467
+ messagebox.showerror("Error", message)
468
+ self.status_bar.config(text=f"Error: {message}")
469
+
470
+ def _start_health_monitoring(self):
471
+ """Periodically check system health"""
472
+ def update_health():
473
+ if self._running:
474
+ health = self.ai_core.self_healing.check_health()
475
+ self.status_bar.config(
476
+ text=f"System Health - Memory: {health['memory_usage']}% | "
477
+ f"CPU: {health['cpu_load']}% | GPU: {health['gpu_memory']
478
+ class AIApp(tk.Tk):
479
+ """GUI application for interacting with the AI system"""
480
+
481
+ def __init__(self, ai_core: AICore):
482
+ super().__init__()
483
+ self.title("Advanced AI System")
484
+ self.ai_core = ai_core
485
+ self._create_widgets()
486
+ self._running = True
487
+ self._start_health_monitoring()
488
+
489
+ def _create_widgets(self):
490
+ """Initialize GUI components"""
491
+ self.query_entry = tk.Entry(self, width=80)
492
+ self.query_entry.pack(pady=10)
493
+
494
+ tk.Button(self, text="Submit", command=self._submit_query).pack(pady=5)
495
+
496
+ self.response_area = scrolledtext.ScrolledText(self, width=100, height=30)
497
+ self.response_area.pack(pady=10)
498
+
499
+ self.status_bar = tk.Label(self, text="Ready", bd=1, relief=tk.SUNKEN, anchor=tk.W)
500
+ self.status_bar.pack(side=tk.BOTTOM, fill=tk.X)
501
+
502
+ def _submit_query(self):
503
+ """Handle query submission with async execution"""
504
+ query = self.query_entry.get()
505
+ if not query:
506
+ return
507
 
508
+ Thread(target=self._run_async_task, args=(self.ai_core.generate_response(query),)).start()
509
 
510
+ def _run_async_task(self, coroutine):
511
+ """Run async task in a separate thread"""
512
+ loop = asyncio.new_event_loop()
513
+ asyncio.set_event_loop(loop)
514
+ try:
515
+ result = loop.run_until_complete(coroutine)
516
+ self.after(0, self._display_result, result)
517
+ except Exception as e:
518
+ self.after(0, self._show_error, str(e))
519
+ finally:
520
+ loop.close()
521
+
522
+ def _display_result(self, result: Dict):
523
+ """Display results in the GUI"""
524
+ self.response_area.insert(tk.END, json.dumps(result, indent=2) + "\n\n")
525
+ self.status_bar.config(text="Query processed successfully")
526
+
527
+ def _show_error(self, message: str):
528
+ """Display error messages to the user"""
529
+ messagebox.showerror("Error", message)
530
+ self.status_bar.config(text=f"Error: {message}")
531
+
532
+ def _start_health_monitoring(self):
533
+ """Periodically check system health"""
534
+ def update_health():
535
+ if self._running:
536
+ health = asyncio.run(self.ai_core.self_healing.check_health())
537
+ self.status_bar.config(
538
+ text=f"System Health - Memory: {health['memory_usage']}% | "
539
+ f"CPU: {health['cpu_load']}% | Response Time: {health['response_time']:.2f}s"
540
+ )
541
+ self.after(5000, update_health)
542
+ update_health()
543
 
544
  async def main():
545
+ """The main function initializes the AI system, handles user input in a loop,
546
+ generates responses using the AI system, and prints the insights, security level,
547
+ AI response, and safety analysis. It also ensures proper shutdown of the AI system
548
+ and its resources."""
549
+ print("­ЪДа Hybrid AI System Initializing (Local Models)")
550
  ai = AICore()
551
+ app = AIApp(ai)
552
+ app.mainloop()
553
+ await ai.shutdown()
 
 
 
 
 
 
 
 
 
 
 
554
 
555
  if __name__ == "__main__":
556
  asyncio.run(main())