Update README.md
Browse files
README.md
CHANGED
@@ -12,197 +12,58 @@ widget:
|
|
12 |
- text: "سید ابراهیم رییسی در سال <mask> رییس جمهور ایران شد."
|
13 |
- text: "دیگر امکان ادامه وجود ندارد. باید قرارداد را <mask> کنیم."
|
14 |
---
|
15 |
-
# Model
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
-
|
|
|
26 |
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
- **Funded by [optional]:** [More Information Needed]
|
31 |
-
- **Shared by [optional]:** [More Information Needed]
|
32 |
-
- **Model type:** [More Information Needed]
|
33 |
-
- **Language(s) (NLP):** [More Information Needed]
|
34 |
-
- **License:** [More Information Needed]
|
35 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
-
|
42 |
-
- **Paper [optional]:** [More Information Needed]
|
43 |
-
- **Demo [optional]:** [More Information Needed]
|
44 |
-
|
45 |
-
## Uses
|
46 |
-
|
47 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
48 |
-
|
49 |
-
### Direct Use
|
50 |
-
|
51 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
52 |
-
|
53 |
-
[More Information Needed]
|
54 |
-
|
55 |
-
### Downstream Use [optional]
|
56 |
-
|
57 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
58 |
-
|
59 |
-
[More Information Needed]
|
60 |
-
|
61 |
-
### Out-of-Scope Use
|
62 |
-
|
63 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
64 |
-
|
65 |
-
[More Information Needed]
|
66 |
-
|
67 |
-
## Bias, Risks, and Limitations
|
68 |
-
|
69 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
70 |
-
|
71 |
-
[More Information Needed]
|
72 |
-
|
73 |
-
### Recommendations
|
74 |
-
|
75 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
76 |
-
|
77 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
78 |
-
|
79 |
-
## How to Get Started with the Model
|
80 |
-
|
81 |
-
Use the code below to get started with the model.
|
82 |
-
|
83 |
-
[More Information Needed]
|
84 |
-
|
85 |
-
## Training Details
|
86 |
-
|
87 |
-
### Training Data
|
88 |
-
|
89 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
90 |
-
|
91 |
-
[More Information Needed]
|
92 |
-
|
93 |
-
### Training Procedure
|
94 |
-
|
95 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
96 |
-
|
97 |
-
#### Preprocessing [optional]
|
98 |
-
|
99 |
-
[More Information Needed]
|
100 |
-
|
101 |
-
|
102 |
-
#### Training Hyperparameters
|
103 |
-
|
104 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
105 |
-
|
106 |
-
#### Speeds, Sizes, Times [optional]
|
107 |
-
|
108 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
109 |
-
|
110 |
-
[More Information Needed]
|
111 |
|
112 |
## Evaluation
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
### Testing Data, Factors & Metrics
|
117 |
-
|
118 |
-
#### Testing Data
|
119 |
-
|
120 |
-
<!-- This should link to a Dataset Card if possible. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
#### Factors
|
125 |
-
|
126 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
#### Metrics
|
131 |
-
|
132 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
133 |
-
|
134 |
-
[More Information Needed]
|
135 |
-
|
136 |
-
### Results
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
-
|
140 |
-
#### Summary
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
## Model Examination [optional]
|
145 |
-
|
146 |
-
<!-- Relevant interpretability work for the model goes here -->
|
147 |
-
|
148 |
-
[More Information Needed]
|
149 |
-
|
150 |
-
## Environmental Impact
|
151 |
-
|
152 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
153 |
-
|
154 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
155 |
-
|
156 |
-
- **Hardware Type:** [More Information Needed]
|
157 |
-
- **Hours used:** [More Information Needed]
|
158 |
-
- **Cloud Provider:** [More Information Needed]
|
159 |
-
- **Compute Region:** [More Information Needed]
|
160 |
-
- **Carbon Emitted:** [More Information Needed]
|
161 |
-
|
162 |
-
## Technical Specifications [optional]
|
163 |
-
|
164 |
-
### Model Architecture and Objective
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
### Compute Infrastructure
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
#### Hardware
|
173 |
-
|
174 |
-
[More Information Needed]
|
175 |
-
|
176 |
-
#### Software
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
## Citation [optional]
|
181 |
-
|
182 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
183 |
-
|
184 |
-
**BibTeX:**
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
**APA:**
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## Glossary [optional]
|
193 |
-
|
194 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## More Information [optional]
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
## Model Card Authors [optional]
|
203 |
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
-
|
207 |
|
208 |
-
|
|
|
12 |
- text: "سید ابراهیم رییسی در سال <mask> رییس جمهور ایران شد."
|
13 |
- text: "دیگر امکان ادامه وجود ندارد. باید قرارداد را <mask> کنیم."
|
14 |
---
|
15 |
+
# Model Details
|
16 |
|
17 |
+
TukaBERT models are a family of encoder models trained on Persian in two sizes of base and large.
|
18 |
+
These Models pre-trained on over 300GB Persian data including variety of topics such as News, Blogs, Forums,
|
19 |
+
Books, etc. They were pre-training with the MLM (WWM) objective using two context lengths.
|
20 |
|
21 |
+
## How to use
|
22 |
|
23 |
+
You can use this model directly for Masked Language Modeling using the provided code below.
|
24 |
|
25 |
+
```Python
|
26 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
27 |
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("PartAI/PartBert-Base")
|
29 |
+
model = AutoModelForMaskedLM.from_pretrained("PartAI/PartBert-Base")
|
30 |
|
31 |
+
# prepare input
|
32 |
+
text = "شهر برلین در کشور <mask> واقع شده است."
|
33 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
34 |
|
35 |
+
# forward pass
|
36 |
+
output = model(**encoded_input)
|
37 |
+
```
|
38 |
|
39 |
+
It is also possible to use inference pipelines such as below.
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
```Python
|
42 |
+
from transformers import pipeline
|
43 |
|
44 |
+
inference_pipeline = pipeline('fill-mask', model="PartAI/PartBert-Base")
|
45 |
+
inference_pipeline("شهر برلین در کشور <mask> واقع شده است.")
|
46 |
+
```
|
47 |
|
48 |
+
You can use this model to fine-tune it over your dataset and prepare it for your task.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
## Evaluation
|
51 |
|
52 |
+
TukaBERT models are evaluated on a wide range of NLP downstream tasks, such as Sentiment Analysis (SA), Text Classification, Multiple-choice, Question Answering, and Named Entity Recognition (NER).
|
53 |
+
Here are some key performance results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
| Model name | DeepSentiPers (f1/acc) | MultiCoNER-v2 (f1/acc) | PQuAD (best_exact/best_f1/HasAns_exact/HasAns_f1) | FarsTail (f1/acc) | ParsiNLU-Multiple-choice (f1/acc) | ParsiNLU-Reading-comprehension (exact/f1) | ParsiNLU-QQP (f1/acc) |
|
56 |
+
|------------------|------------------------|------------------------|---------------------------------------------------|-------------------|-----------------------------------|-------------------------------------------|-----------------------|
|
57 |
+
| TukaBERT-large | **85.66/85.78** | **69.69/94.07** | **75.56/88.06/70.24/87.83** | **89.71/89.72** | **36.13/35.97** | **33.6/60.5** | **82.72/82.63** |
|
58 |
+
| TukaBERT-base | _83.93/83.93_ | _66.23/93.3_ | _73.18_/_85.71_/_68.29_/_85.94_ | _83.26/83.41_ | 33.6/_33.81_ | 20.8/42.52 | _81.33/81.29_ |
|
59 |
+
| Shiraz | 81.17/81.08 | 59.1/92.83 | 65.96/81.25/59.63/81.31 | 77.76/77.75 | _34.73/34.53_ | 17.6/39.61 | 79.68/79.51 |
|
60 |
+
| ParsBERT | 80.22/80.23 | 64.91/93.23 | 71.41/84.21/66.29/84.57 | 80.89/80.94 | **35.34/35.25** | 20/39.58 | 80.15/80.07 |
|
61 |
+
| XLM-V-base | _83.43/83.36_ | 58.83/92.23 | _73.26_/_85.69_/_68.21_/_85.56_ | 81.1/81.2 | **35.28/35.25** | 8/26.66 | 80.1/79.96 |
|
62 |
+
| XLM-RoBERTa-base | _83.99/84.07_ | 60.38/92.49 | _73.72_/_86.24_/_68.16_/_85.8_ | 82.0/81.98 | 32.4/32.37 | 20.0/40.43 | 79.14/78.95 |
|
63 |
+
| FaBERT | 82.68/82.65 | 63.89/93.01 | _72.57_/_85.39_/67.16/_85.31_ | _83.69/83.67_ | 32.47/32.37 | _27.2/48.42_ | **82.34/82.29** |
|
64 |
+
| mBERT | 78.57/78.66 | 60.31/92.54 | 71.79/84.68/65.89/83.99 | _82.69/82.82_ | 33.41/33.09 | _27.2_/42.18 | 79.19/79.29 |
|
65 |
+
| AriaBERT | 80.51/80.51 | 60.98/92.45 | 68.09/81.23/62.12/80.94 | 74.47/74.43 | 30.75/30.94 | 14.4/35.48 | 79.09/78.84 |
|
66 |
|
67 |
+
\*Note because of the randomness in the fine-tuning process, results with less than 1% differences are italic together.
|
68 |
|
69 |
+
## How to Cite
|