File size: 18,676 Bytes
2322e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2023 The OpenRL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import torch
import torch.nn as nn
from torch.distributions import Categorical

import gym

def check(input):
    output = torch.from_numpy(input) if type(input) == np.ndarray else input
    return output

class FcEncoder(nn.Module):
    def __init__(self, fc_num, input_size, output_size):
        super(FcEncoder, self).__init__()
        self.first_mlp = nn.Sequential(
                nn.Linear(input_size, output_size), nn.ReLU(), nn.LayerNorm(output_size)
            )
        self.mlp = nn.Sequential()
        for _ in range(fc_num - 1):
            self.mlp.append(nn.Sequential(
                nn.Linear(output_size, output_size), nn.ReLU(), nn.LayerNorm(output_size)
            ))

    def forward(self, x):
        output = self.first_mlp(x)
        return self.mlp(output)

def init(module, weight_init, bias_init, gain=1):
    weight_init(module.weight.data, gain=gain)
    if module.bias is not None:
        bias_init(module.bias.data)
    return module


class FixedCategorical(torch.distributions.Categorical):
    def sample(self):
        return super().sample().unsqueeze(-1)

    def log_probs(self, actions):
        return (
            super()
            .log_prob(actions.squeeze(-1))
            .view(actions.size(0), -1)
            .sum(-1)
            .unsqueeze(-1)
        )

    def mode(self):
        return self.probs.argmax(dim=-1, keepdim=True)

class Categorical(nn.Module):
    def __init__(self, num_inputs, num_outputs, use_orthogonal=True, gain=0.01):
        super(Categorical, self).__init__()
        init_method = [nn.init.xavier_uniform_, nn.init.orthogonal_][use_orthogonal]
        def init_(m): 
            return init(m, init_method, lambda x: nn.init.constant_(x, 0), gain)

        self.linear = init_(nn.Linear(num_inputs, num_outputs))

    def forward(self, x, available_actions=None):
        x = self.linear(x)
        if available_actions is not None:
            x[available_actions == 0] = -1e10
        return FixedCategorical(logits=x)


class AddBias(nn.Module):
    def __init__(self, bias):
        super(AddBias, self).__init__()
        self._bias = nn.Parameter(bias.unsqueeze(1))

    def forward(self, x):
        if x.dim() == 2:
            bias = self._bias.t().view(1, -1)
        else:
            bias = self._bias.t().view(1, -1, 1, 1)

        return x + bias

class ACTLayer(nn.Module):
    def __init__(self, action_space, inputs_dim, use_orthogonal, gain):
        super(ACTLayer, self).__init__()
        self.multidiscrete_action = False
        self.continuous_action = False
        self.mixed_action = False

        action_dim = action_space.n
        self.action_out = Categorical(inputs_dim, action_dim, use_orthogonal, gain)


    
    def forward(self, x, available_actions=None, deterministic=False):
        if self.mixed_action :
            actions = []
            action_log_probs = []
            for action_out in self.action_outs:
                action_logit = action_out(x)
                action = action_logit.mode() if deterministic else action_logit.sample()
                action_log_prob = action_logit.log_probs(action)
                actions.append(action.float())
                action_log_probs.append(action_log_prob)

            actions = torch.cat(actions, -1)
            action_log_probs = torch.sum(torch.cat(action_log_probs, -1), -1, keepdim=True)

        elif self.multidiscrete_action:
            actions = []
            action_log_probs = []
            for action_out in self.action_outs:
                action_logit = action_out(x)
                action = action_logit.mode() if deterministic else action_logit.sample()
                action_log_prob = action_logit.log_probs(action)
                actions.append(action)
                action_log_probs.append(action_log_prob)

            actions = torch.cat(actions, -1)
            action_log_probs = torch.cat(action_log_probs, -1)
        
        elif self.continuous_action:
            action_logits = self.action_out(x)
            actions = action_logits.mode() if deterministic else action_logits.sample() 
            action_log_probs = action_logits.log_probs(actions)
        
        else:
            action_logits = self.action_out(x, available_actions)
            actions = action_logits.mode() if deterministic else action_logits.sample() 
            action_log_probs = action_logits.log_probs(actions)
        
        return actions, action_log_probs

    def get_probs(self, x, available_actions=None):
        if self.mixed_action or self.multidiscrete_action:
            action_probs = []
            for action_out in self.action_outs:
                action_logit = action_out(x)
                action_prob = action_logit.probs
                action_probs.append(action_prob)
            action_probs = torch.cat(action_probs, -1)
        elif self.continuous_action:
            action_logits = self.action_out(x)
            action_probs = action_logits.probs
        else:
            action_logits = self.action_out(x, available_actions)
            action_probs = action_logits.probs
        
        return action_probs

    def evaluate_actions(self, x, action, available_actions=None, active_masks=None, get_probs=False):
        if self.mixed_action:
            a, b = action.split((2, 1), -1)
            b = b.long()
            action = [a, b] 
            action_log_probs = [] 
            dist_entropy = []
            for action_out, act in zip(self.action_outs, action):
                action_logit = action_out(x)
                action_log_probs.append(action_logit.log_probs(act))
                if active_masks is not None:
                    if len(action_logit.entropy().shape) == len(active_masks.shape):
                        dist_entropy.append((action_logit.entropy() * active_masks).sum()/active_masks.sum()) 
                    else:
                        dist_entropy.append((action_logit.entropy() * active_masks.squeeze(-1)).sum()/active_masks.sum())
                else:
                    dist_entropy.append(action_logit.entropy().mean())
                
            action_log_probs = torch.sum(torch.cat(action_log_probs, -1), -1, keepdim=True)
            dist_entropy = dist_entropy[0] * 0.0025 + dist_entropy[1] * 0.01 

        elif self.multidiscrete_action:
            action = torch.transpose(action, 0, 1)
            action_log_probs = []
            dist_entropy = []
            for action_out, act in zip(self.action_outs, action):
                action_logit = action_out(x)
                action_log_probs.append(action_logit.log_probs(act))
                if active_masks is not None:
                    dist_entropy.append((action_logit.entropy()*active_masks.squeeze(-1)).sum()/active_masks.sum())
                else:
                    dist_entropy.append(action_logit.entropy().mean())

            action_log_probs = torch.cat(action_log_probs, -1) # ! could be wrong
            dist_entropy = torch.tensor(dist_entropy).mean()

        elif self.continuous_action:
            action_logits = self.action_out(x)
            action_log_probs = action_logits.log_probs(action)
            act_entropy = action_logits.entropy()
            # import pdb;pdb.set_trace()
            if active_masks is not None:
                dist_entropy = (act_entropy*active_masks).sum()/active_masks.sum()
            else:
                dist_entropy = act_entropy.mean()

        else:
            action_logits = self.action_out(x, available_actions)
            action_log_probs = action_logits.log_probs(action)
            if active_masks is not None:
                dist_entropy = (action_logits.entropy()*active_masks.squeeze(-1)).sum()/active_masks.sum()
            else:
                dist_entropy = action_logits.entropy().mean()
        if not get_probs:
            return action_log_probs, dist_entropy
        else:
            return action_log_probs, dist_entropy, action_logits

class RNNLayer(nn.Module):
    def __init__(self, inputs_dim, outputs_dim, recurrent_N, use_orthogonal,rnn_type='gru'):
        super(RNNLayer, self).__init__()
        self._recurrent_N = recurrent_N
        self._use_orthogonal = use_orthogonal
        self.rnn_type = rnn_type
        if rnn_type == 'gru':
            self.rnn = nn.GRU(inputs_dim, outputs_dim, num_layers=self._recurrent_N)
        elif rnn_type == 'lstm':
            self.rnn = nn.LSTM(inputs_dim, outputs_dim, num_layers=self._recurrent_N)
        else:
            raise NotImplementedError(f'RNN type {rnn_type} has not been implemented.')

        for name, param in self.rnn.named_parameters():
            if 'bias' in name:
                nn.init.constant_(param, 0)
            elif 'weight' in name:
                if self._use_orthogonal:
                    nn.init.orthogonal_(param)
                else:
                    nn.init.xavier_uniform_(param)
        self.norm = nn.LayerNorm(outputs_dim)

    def rnn_forward(self, x, h):
        if self.rnn_type == 'lstm':
            h = torch.split(h, h.shape[-1] // 2, dim=-1)
            h = (h[0].contiguous(), h[1].contiguous())
        x_, h_ = self.rnn(x, h)
        if self.rnn_type == 'lstm':
            h_ = torch.cat(h_, -1)
        return x_, h_

    def forward(self, x, hxs, masks):
        if x.size(0) == hxs.size(0):
            x, hxs = self.rnn_forward(x.unsqueeze(0), (hxs * masks.repeat(1, self._recurrent_N).unsqueeze(-1)).transpose(0, 1).contiguous())
            #x= self.gru(x.unsqueeze(0))
            x = x.squeeze(0)
            hxs = hxs.transpose(0, 1)
        else:
            # x is a (T, N, -1) tensor that has been flatten to (T * N, -1)
            N = hxs.size(0)
            T = int(x.size(0) / N)

            # unflatten
            x = x.view(T, N, x.size(1))

            # Same deal with masks
            masks = masks.view(T, N)

            # Let's figure out which steps in the sequence have a zero for any agent
            # We will always assume t=0 has a zero in it as that makes the logic cleaner
            has_zeros = ((masks[1:] == 0.0)
                         .any(dim=-1)
                         .nonzero()
                         .squeeze()
                         .cpu())

            # +1 to correct the masks[1:]
            if has_zeros.dim() == 0:
                # Deal with scalar
                has_zeros = [has_zeros.item() + 1]
            else:
                has_zeros = (has_zeros + 1).numpy().tolist()

            # add t=0 and t=T to the list
            has_zeros = [0] + has_zeros + [T]

            hxs = hxs.transpose(0, 1)

            outputs = []
            for i in range(len(has_zeros) - 1):
                # We can now process steps that don't have any zeros in masks together!
                # This is much faster
                start_idx = has_zeros[i]
                end_idx = has_zeros[i + 1]               
                temp = (hxs * masks[start_idx].view(1, -1, 1).repeat(self._recurrent_N, 1, 1)).contiguous()
                rnn_scores, hxs = self.rnn_forward(x[start_idx:end_idx], temp)
                outputs.append(rnn_scores)

            # assert len(outputs) == T
            # x is a (T, N, -1) tensor
            x = torch.cat(outputs, dim=0)

            # flatten
            x = x.reshape(T * N, -1)
            hxs = hxs.transpose(0, 1)

        x = self.norm(x)
        return x, hxs


class InputEncoder(nn.Module):
    def __init__(self):
        super(InputEncoder, self).__init__()
        fc_layer_num = 2
        fc_output_num = 64
        self.active_input_num = 87
        self.ball_owner_input_num = 57
        self.left_input_num = 88
        self.right_input_num = 88
        self.match_state_input_num = 9

        self.active_encoder = FcEncoder(fc_layer_num, self.active_input_num, fc_output_num)
        self.ball_owner_encoder = FcEncoder(fc_layer_num, self.ball_owner_input_num, fc_output_num)
        self.left_encoder = FcEncoder(fc_layer_num, self.left_input_num, fc_output_num)
        self.right_encoder = FcEncoder(fc_layer_num, self.right_input_num, fc_output_num)
        self.match_state_encoder = FcEncoder(fc_layer_num, self.match_state_input_num, self.match_state_input_num)

    def forward(self, x):
        active_vec = x[:, :self.active_input_num]
        ball_owner_vec = x[:, self.active_input_num : self.active_input_num + self.ball_owner_input_num]
        left_vec = x[:, self.active_input_num + self.ball_owner_input_num : self.active_input_num + self.ball_owner_input_num + self.left_input_num]
        right_vec = x[:, self.active_input_num + self.ball_owner_input_num + self.left_input_num : \
            self.active_input_num + self.ball_owner_input_num + self.left_input_num + self.right_input_num]
        match_state_vec = x[:, self.active_input_num + self.ball_owner_input_num + self.left_input_num + self.right_input_num:]

        active_output = self.active_encoder(active_vec)
        ball_owner_output = self.ball_owner_encoder(ball_owner_vec)
        left_output = self.left_encoder(left_vec)
        right_output = self.right_encoder(right_vec)
        match_state_output = self.match_state_encoder(match_state_vec)

        return torch.cat([
            active_output,
            ball_owner_output,
            left_output,
            right_output,
            match_state_output
        ], 1)

def get_fc(input_size, output_size):
    return nn.Sequential(nn.Linear(input_size, output_size), nn.ReLU(), nn.LayerNorm(output_size))

class ObsEncoder(nn.Module):
    def __init__(self, input_embedding_size, hidden_size, _recurrent_N, _use_orthogonal, rnn_type):
        super(ObsEncoder, self).__init__()
        self.input_encoder = InputEncoder()     # input先过一遍input encoder
        self.input_embedding = get_fc(input_embedding_size, hidden_size)  # 将encoder输出进行embedding
        self.rnn = RNNLayer(hidden_size, hidden_size, _recurrent_N, _use_orthogonal, rnn_type=rnn_type)  # embedding输出过一遍rnn
        self.after_rnn_mlp = get_fc(hidden_size, hidden_size)   # 过了rnn后再过该mlp

    def forward(self, obs, rnn_states, masks):
        actor_features = self.input_encoder(obs)
        actor_features = self.input_embedding(actor_features)
        output, rnn_states = self.rnn(actor_features, rnn_states, masks)
        return self.after_rnn_mlp(output), rnn_states


class PolicyNetwork(nn.Module):
    def __init__(self, device=torch.device("cpu")):
        super(PolicyNetwork, self).__init__()
        self.tpdv = dict(dtype=torch.float32, device=device)
        self.device = device
        self.hidden_size = 256
        self._use_policy_active_masks = True
        recurrent_N = 1
        use_orthogonal = True
        rnn_type = 'lstm'
        gain = 0.01
        action_space = gym.spaces.Discrete(20)
        self.action_dim = 19
        input_embedding_size = 64 * 4 + 9
        self.active_id_size = 1
        self.id_max = 11

        self.obs_encoder = ObsEncoder(input_embedding_size, self.hidden_size, recurrent_N, use_orthogonal, rnn_type)

        self.predict_id = get_fc(self.hidden_size + self.action_dim, self.id_max)    # 其他信息(指除了active_id外的信息)过了rnn和一层mlp后,经过该层来预测id
        self.id_embedding = get_fc(self.id_max, self.id_max)     # active id作为输入,输出和其他信息的feature concat

        self.before_act_wrapper = FcEncoder(2, self.hidden_size + self.id_max, self.hidden_size)
        self.act = ACTLayer(action_space, self.hidden_size, use_orthogonal, gain)

        self.to(device)


    def forward(self, obs, rnn_states, masks=np.concatenate(np.ones((1, 1, 1), dtype=np.float32)), available_actions=None, deterministic=False):
        obs = check(obs).to(**self.tpdv)
        if available_actions is not None:
            available_actions = check(available_actions).to(**self.tpdv)
        masks = check(masks).to(**self.tpdv)
        rnn_states = check(rnn_states).to(**self.tpdv)

        active_id = obs[:,:self.active_id_size].squeeze(1).long()
        id_onehot = torch.eye(self.id_max)[active_id].to(self.device)
        obs = obs[:,self.active_id_size:]
        
        obs_output, rnn_states = self.obs_encoder(obs, rnn_states, masks)
        id_output = self.id_embedding(id_onehot)
        output = torch.cat([id_output, obs_output], 1)
        
        output = self.before_act_wrapper(output)

        actions, action_log_probs = self.act(output, available_actions, deterministic)
        return actions, rnn_states

    def eval_actions(self, obs, rnn_states, action, masks, available_actions=None, active_masks=None):
        obs = check(obs).to(**self.tpdv)
        if available_actions is not None:
            available_actions = check(available_actions).to(**self.tpdv)
        if active_masks is not None:
            active_masks = check(active_masks).to(**self.tpdv)
        masks = check(masks).to(**self.tpdv)
        rnn_states = check(rnn_states).to(**self.tpdv)
        action = check(action).to(**self.tpdv)

        id_groundtruth = obs[:,:self.active_id_size].squeeze(1).long()
        id_onehot = torch.eye(self.id_max)[id_groundtruth].to(self.device)
        obs = obs[:,self.active_id_size:]

        obs_output, rnn_states = self.obs_encoder(obs, rnn_states, masks)
        id_output = self.id_embedding(id_onehot)

        action_onehot = torch.eye(self.action_dim)[action.squeeze(1).long()].to(self.device)

        id_prediction = self.predict_id(torch.cat([obs_output, action_onehot], 1))
        output = torch.cat([id_output, obs_output], 1)

        output = self.before_act_wrapper(output)
        action_log_probs, dist_entropy = self.act.evaluate_actions(output, action, available_actions,
                                                                   active_masks=active_masks if self._use_policy_active_masks else None)
        values = None
        return action_log_probs, dist_entropy, values, id_prediction, id_groundtruth