File size: 18,676 Bytes
2322e9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2023 The OpenRL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import torch.nn as nn
from torch.distributions import Categorical
import gym
def check(input):
output = torch.from_numpy(input) if type(input) == np.ndarray else input
return output
class FcEncoder(nn.Module):
def __init__(self, fc_num, input_size, output_size):
super(FcEncoder, self).__init__()
self.first_mlp = nn.Sequential(
nn.Linear(input_size, output_size), nn.ReLU(), nn.LayerNorm(output_size)
)
self.mlp = nn.Sequential()
for _ in range(fc_num - 1):
self.mlp.append(nn.Sequential(
nn.Linear(output_size, output_size), nn.ReLU(), nn.LayerNorm(output_size)
))
def forward(self, x):
output = self.first_mlp(x)
return self.mlp(output)
def init(module, weight_init, bias_init, gain=1):
weight_init(module.weight.data, gain=gain)
if module.bias is not None:
bias_init(module.bias.data)
return module
class FixedCategorical(torch.distributions.Categorical):
def sample(self):
return super().sample().unsqueeze(-1)
def log_probs(self, actions):
return (
super()
.log_prob(actions.squeeze(-1))
.view(actions.size(0), -1)
.sum(-1)
.unsqueeze(-1)
)
def mode(self):
return self.probs.argmax(dim=-1, keepdim=True)
class Categorical(nn.Module):
def __init__(self, num_inputs, num_outputs, use_orthogonal=True, gain=0.01):
super(Categorical, self).__init__()
init_method = [nn.init.xavier_uniform_, nn.init.orthogonal_][use_orthogonal]
def init_(m):
return init(m, init_method, lambda x: nn.init.constant_(x, 0), gain)
self.linear = init_(nn.Linear(num_inputs, num_outputs))
def forward(self, x, available_actions=None):
x = self.linear(x)
if available_actions is not None:
x[available_actions == 0] = -1e10
return FixedCategorical(logits=x)
class AddBias(nn.Module):
def __init__(self, bias):
super(AddBias, self).__init__()
self._bias = nn.Parameter(bias.unsqueeze(1))
def forward(self, x):
if x.dim() == 2:
bias = self._bias.t().view(1, -1)
else:
bias = self._bias.t().view(1, -1, 1, 1)
return x + bias
class ACTLayer(nn.Module):
def __init__(self, action_space, inputs_dim, use_orthogonal, gain):
super(ACTLayer, self).__init__()
self.multidiscrete_action = False
self.continuous_action = False
self.mixed_action = False
action_dim = action_space.n
self.action_out = Categorical(inputs_dim, action_dim, use_orthogonal, gain)
def forward(self, x, available_actions=None, deterministic=False):
if self.mixed_action :
actions = []
action_log_probs = []
for action_out in self.action_outs:
action_logit = action_out(x)
action = action_logit.mode() if deterministic else action_logit.sample()
action_log_prob = action_logit.log_probs(action)
actions.append(action.float())
action_log_probs.append(action_log_prob)
actions = torch.cat(actions, -1)
action_log_probs = torch.sum(torch.cat(action_log_probs, -1), -1, keepdim=True)
elif self.multidiscrete_action:
actions = []
action_log_probs = []
for action_out in self.action_outs:
action_logit = action_out(x)
action = action_logit.mode() if deterministic else action_logit.sample()
action_log_prob = action_logit.log_probs(action)
actions.append(action)
action_log_probs.append(action_log_prob)
actions = torch.cat(actions, -1)
action_log_probs = torch.cat(action_log_probs, -1)
elif self.continuous_action:
action_logits = self.action_out(x)
actions = action_logits.mode() if deterministic else action_logits.sample()
action_log_probs = action_logits.log_probs(actions)
else:
action_logits = self.action_out(x, available_actions)
actions = action_logits.mode() if deterministic else action_logits.sample()
action_log_probs = action_logits.log_probs(actions)
return actions, action_log_probs
def get_probs(self, x, available_actions=None):
if self.mixed_action or self.multidiscrete_action:
action_probs = []
for action_out in self.action_outs:
action_logit = action_out(x)
action_prob = action_logit.probs
action_probs.append(action_prob)
action_probs = torch.cat(action_probs, -1)
elif self.continuous_action:
action_logits = self.action_out(x)
action_probs = action_logits.probs
else:
action_logits = self.action_out(x, available_actions)
action_probs = action_logits.probs
return action_probs
def evaluate_actions(self, x, action, available_actions=None, active_masks=None, get_probs=False):
if self.mixed_action:
a, b = action.split((2, 1), -1)
b = b.long()
action = [a, b]
action_log_probs = []
dist_entropy = []
for action_out, act in zip(self.action_outs, action):
action_logit = action_out(x)
action_log_probs.append(action_logit.log_probs(act))
if active_masks is not None:
if len(action_logit.entropy().shape) == len(active_masks.shape):
dist_entropy.append((action_logit.entropy() * active_masks).sum()/active_masks.sum())
else:
dist_entropy.append((action_logit.entropy() * active_masks.squeeze(-1)).sum()/active_masks.sum())
else:
dist_entropy.append(action_logit.entropy().mean())
action_log_probs = torch.sum(torch.cat(action_log_probs, -1), -1, keepdim=True)
dist_entropy = dist_entropy[0] * 0.0025 + dist_entropy[1] * 0.01
elif self.multidiscrete_action:
action = torch.transpose(action, 0, 1)
action_log_probs = []
dist_entropy = []
for action_out, act in zip(self.action_outs, action):
action_logit = action_out(x)
action_log_probs.append(action_logit.log_probs(act))
if active_masks is not None:
dist_entropy.append((action_logit.entropy()*active_masks.squeeze(-1)).sum()/active_masks.sum())
else:
dist_entropy.append(action_logit.entropy().mean())
action_log_probs = torch.cat(action_log_probs, -1) # ! could be wrong
dist_entropy = torch.tensor(dist_entropy).mean()
elif self.continuous_action:
action_logits = self.action_out(x)
action_log_probs = action_logits.log_probs(action)
act_entropy = action_logits.entropy()
# import pdb;pdb.set_trace()
if active_masks is not None:
dist_entropy = (act_entropy*active_masks).sum()/active_masks.sum()
else:
dist_entropy = act_entropy.mean()
else:
action_logits = self.action_out(x, available_actions)
action_log_probs = action_logits.log_probs(action)
if active_masks is not None:
dist_entropy = (action_logits.entropy()*active_masks.squeeze(-1)).sum()/active_masks.sum()
else:
dist_entropy = action_logits.entropy().mean()
if not get_probs:
return action_log_probs, dist_entropy
else:
return action_log_probs, dist_entropy, action_logits
class RNNLayer(nn.Module):
def __init__(self, inputs_dim, outputs_dim, recurrent_N, use_orthogonal,rnn_type='gru'):
super(RNNLayer, self).__init__()
self._recurrent_N = recurrent_N
self._use_orthogonal = use_orthogonal
self.rnn_type = rnn_type
if rnn_type == 'gru':
self.rnn = nn.GRU(inputs_dim, outputs_dim, num_layers=self._recurrent_N)
elif rnn_type == 'lstm':
self.rnn = nn.LSTM(inputs_dim, outputs_dim, num_layers=self._recurrent_N)
else:
raise NotImplementedError(f'RNN type {rnn_type} has not been implemented.')
for name, param in self.rnn.named_parameters():
if 'bias' in name:
nn.init.constant_(param, 0)
elif 'weight' in name:
if self._use_orthogonal:
nn.init.orthogonal_(param)
else:
nn.init.xavier_uniform_(param)
self.norm = nn.LayerNorm(outputs_dim)
def rnn_forward(self, x, h):
if self.rnn_type == 'lstm':
h = torch.split(h, h.shape[-1] // 2, dim=-1)
h = (h[0].contiguous(), h[1].contiguous())
x_, h_ = self.rnn(x, h)
if self.rnn_type == 'lstm':
h_ = torch.cat(h_, -1)
return x_, h_
def forward(self, x, hxs, masks):
if x.size(0) == hxs.size(0):
x, hxs = self.rnn_forward(x.unsqueeze(0), (hxs * masks.repeat(1, self._recurrent_N).unsqueeze(-1)).transpose(0, 1).contiguous())
#x= self.gru(x.unsqueeze(0))
x = x.squeeze(0)
hxs = hxs.transpose(0, 1)
else:
# x is a (T, N, -1) tensor that has been flatten to (T * N, -1)
N = hxs.size(0)
T = int(x.size(0) / N)
# unflatten
x = x.view(T, N, x.size(1))
# Same deal with masks
masks = masks.view(T, N)
# Let's figure out which steps in the sequence have a zero for any agent
# We will always assume t=0 has a zero in it as that makes the logic cleaner
has_zeros = ((masks[1:] == 0.0)
.any(dim=-1)
.nonzero()
.squeeze()
.cpu())
# +1 to correct the masks[1:]
if has_zeros.dim() == 0:
# Deal with scalar
has_zeros = [has_zeros.item() + 1]
else:
has_zeros = (has_zeros + 1).numpy().tolist()
# add t=0 and t=T to the list
has_zeros = [0] + has_zeros + [T]
hxs = hxs.transpose(0, 1)
outputs = []
for i in range(len(has_zeros) - 1):
# We can now process steps that don't have any zeros in masks together!
# This is much faster
start_idx = has_zeros[i]
end_idx = has_zeros[i + 1]
temp = (hxs * masks[start_idx].view(1, -1, 1).repeat(self._recurrent_N, 1, 1)).contiguous()
rnn_scores, hxs = self.rnn_forward(x[start_idx:end_idx], temp)
outputs.append(rnn_scores)
# assert len(outputs) == T
# x is a (T, N, -1) tensor
x = torch.cat(outputs, dim=0)
# flatten
x = x.reshape(T * N, -1)
hxs = hxs.transpose(0, 1)
x = self.norm(x)
return x, hxs
class InputEncoder(nn.Module):
def __init__(self):
super(InputEncoder, self).__init__()
fc_layer_num = 2
fc_output_num = 64
self.active_input_num = 87
self.ball_owner_input_num = 57
self.left_input_num = 88
self.right_input_num = 88
self.match_state_input_num = 9
self.active_encoder = FcEncoder(fc_layer_num, self.active_input_num, fc_output_num)
self.ball_owner_encoder = FcEncoder(fc_layer_num, self.ball_owner_input_num, fc_output_num)
self.left_encoder = FcEncoder(fc_layer_num, self.left_input_num, fc_output_num)
self.right_encoder = FcEncoder(fc_layer_num, self.right_input_num, fc_output_num)
self.match_state_encoder = FcEncoder(fc_layer_num, self.match_state_input_num, self.match_state_input_num)
def forward(self, x):
active_vec = x[:, :self.active_input_num]
ball_owner_vec = x[:, self.active_input_num : self.active_input_num + self.ball_owner_input_num]
left_vec = x[:, self.active_input_num + self.ball_owner_input_num : self.active_input_num + self.ball_owner_input_num + self.left_input_num]
right_vec = x[:, self.active_input_num + self.ball_owner_input_num + self.left_input_num : \
self.active_input_num + self.ball_owner_input_num + self.left_input_num + self.right_input_num]
match_state_vec = x[:, self.active_input_num + self.ball_owner_input_num + self.left_input_num + self.right_input_num:]
active_output = self.active_encoder(active_vec)
ball_owner_output = self.ball_owner_encoder(ball_owner_vec)
left_output = self.left_encoder(left_vec)
right_output = self.right_encoder(right_vec)
match_state_output = self.match_state_encoder(match_state_vec)
return torch.cat([
active_output,
ball_owner_output,
left_output,
right_output,
match_state_output
], 1)
def get_fc(input_size, output_size):
return nn.Sequential(nn.Linear(input_size, output_size), nn.ReLU(), nn.LayerNorm(output_size))
class ObsEncoder(nn.Module):
def __init__(self, input_embedding_size, hidden_size, _recurrent_N, _use_orthogonal, rnn_type):
super(ObsEncoder, self).__init__()
self.input_encoder = InputEncoder() # input先过一遍input encoder
self.input_embedding = get_fc(input_embedding_size, hidden_size) # 将encoder输出进行embedding
self.rnn = RNNLayer(hidden_size, hidden_size, _recurrent_N, _use_orthogonal, rnn_type=rnn_type) # embedding输出过一遍rnn
self.after_rnn_mlp = get_fc(hidden_size, hidden_size) # 过了rnn后再过该mlp
def forward(self, obs, rnn_states, masks):
actor_features = self.input_encoder(obs)
actor_features = self.input_embedding(actor_features)
output, rnn_states = self.rnn(actor_features, rnn_states, masks)
return self.after_rnn_mlp(output), rnn_states
class PolicyNetwork(nn.Module):
def __init__(self, device=torch.device("cpu")):
super(PolicyNetwork, self).__init__()
self.tpdv = dict(dtype=torch.float32, device=device)
self.device = device
self.hidden_size = 256
self._use_policy_active_masks = True
recurrent_N = 1
use_orthogonal = True
rnn_type = 'lstm'
gain = 0.01
action_space = gym.spaces.Discrete(20)
self.action_dim = 19
input_embedding_size = 64 * 4 + 9
self.active_id_size = 1
self.id_max = 11
self.obs_encoder = ObsEncoder(input_embedding_size, self.hidden_size, recurrent_N, use_orthogonal, rnn_type)
self.predict_id = get_fc(self.hidden_size + self.action_dim, self.id_max) # 其他信息(指除了active_id外的信息)过了rnn和一层mlp后,经过该层来预测id
self.id_embedding = get_fc(self.id_max, self.id_max) # active id作为输入,输出和其他信息的feature concat
self.before_act_wrapper = FcEncoder(2, self.hidden_size + self.id_max, self.hidden_size)
self.act = ACTLayer(action_space, self.hidden_size, use_orthogonal, gain)
self.to(device)
def forward(self, obs, rnn_states, masks=np.concatenate(np.ones((1, 1, 1), dtype=np.float32)), available_actions=None, deterministic=False):
obs = check(obs).to(**self.tpdv)
if available_actions is not None:
available_actions = check(available_actions).to(**self.tpdv)
masks = check(masks).to(**self.tpdv)
rnn_states = check(rnn_states).to(**self.tpdv)
active_id = obs[:,:self.active_id_size].squeeze(1).long()
id_onehot = torch.eye(self.id_max)[active_id].to(self.device)
obs = obs[:,self.active_id_size:]
obs_output, rnn_states = self.obs_encoder(obs, rnn_states, masks)
id_output = self.id_embedding(id_onehot)
output = torch.cat([id_output, obs_output], 1)
output = self.before_act_wrapper(output)
actions, action_log_probs = self.act(output, available_actions, deterministic)
return actions, rnn_states
def eval_actions(self, obs, rnn_states, action, masks, available_actions=None, active_masks=None):
obs = check(obs).to(**self.tpdv)
if available_actions is not None:
available_actions = check(available_actions).to(**self.tpdv)
if active_masks is not None:
active_masks = check(active_masks).to(**self.tpdv)
masks = check(masks).to(**self.tpdv)
rnn_states = check(rnn_states).to(**self.tpdv)
action = check(action).to(**self.tpdv)
id_groundtruth = obs[:,:self.active_id_size].squeeze(1).long()
id_onehot = torch.eye(self.id_max)[id_groundtruth].to(self.device)
obs = obs[:,self.active_id_size:]
obs_output, rnn_states = self.obs_encoder(obs, rnn_states, masks)
id_output = self.id_embedding(id_onehot)
action_onehot = torch.eye(self.action_dim)[action.squeeze(1).long()].to(self.device)
id_prediction = self.predict_id(torch.cat([obs_output, action_onehot], 1))
output = torch.cat([id_output, obs_output], 1)
output = self.before_act_wrapper(output)
action_log_probs, dist_entropy = self.act.evaluate_actions(output, action, available_actions,
active_masks=active_masks if self._use_policy_active_masks else None)
values = None
return action_log_probs, dist_entropy, values, id_prediction, id_groundtruth
|