Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: transformers
|
5 |
+
license: apache-2.0
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
tags:
|
9 |
+
- multimodal
|
10 |
+
pipeline_tag: video-text-to-text
|
11 |
+
base_model: Qwen/Qwen2.5-VL-7B-Instruct
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
# ๐ก VideoChat-R1_7B
|
16 |
+
|
17 |
+
[\[๐ GitHub\]](https://github.com/OpenGVLab/VideoChat-R1)
|
18 |
+
[\[๐ Tech Report\]](https://arxiv.org/pdf/2504.06958)
|
19 |
+
|
20 |
+
|
21 |
+
## ๐ How to use the model
|
22 |
+
|
23 |
+
We provide a simple installation example below:
|
24 |
+
```
|
25 |
+
pip install transformers
|
26 |
+
pip install qwen_vl_utils
|
27 |
+
```
|
28 |
+
Then you could use our model:
|
29 |
+
```python
|
30 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
31 |
+
from qwen_vl_utils import process_vision_info
|
32 |
+
|
33 |
+
model_path = "OpenGVLab/VideoChat-R1_7B"
|
34 |
+
# default: Load the model on the available device(s)
|
35 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
36 |
+
model_path, torch_dtype="auto", device_map="auto",
|
37 |
+
attn_implementation="flash_attention_2"
|
38 |
+
)
|
39 |
+
|
40 |
+
# default processer
|
41 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
42 |
+
|
43 |
+
video_path = "your_video.mp4"
|
44 |
+
question = "Where is the final cup containing the object?"
|
45 |
+
|
46 |
+
messages = [
|
47 |
+
{
|
48 |
+
"role": "user",
|
49 |
+
"content": [
|
50 |
+
{
|
51 |
+
"type": "video",
|
52 |
+
"video": video_path,
|
53 |
+
"max_pixels": 360 * 420,
|
54 |
+
"fps": 1.0,
|
55 |
+
},
|
56 |
+
{"type": "text", "text": f"""{question}
|
57 |
+
Provide your final answer within the <answer> </answer> tags.
|
58 |
+
"""},
|
59 |
+
],
|
60 |
+
}
|
61 |
+
]
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
#In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time.
|
66 |
+
# Preparation for inference
|
67 |
+
text = processor.apply_chat_template(
|
68 |
+
messages, tokenize=False, add_generation_prompt=True
|
69 |
+
)
|
70 |
+
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
|
71 |
+
inputs = processor(
|
72 |
+
text=[text],
|
73 |
+
images=image_inputs,
|
74 |
+
videos=video_inputs,
|
75 |
+
padding=True,
|
76 |
+
return_tensors="pt",
|
77 |
+
**video_kwargs,
|
78 |
+
)
|
79 |
+
inputs = inputs.to("cuda")
|
80 |
+
|
81 |
+
# Inference
|
82 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
83 |
+
generated_ids_trimmed = [
|
84 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
85 |
+
]
|
86 |
+
output_text = processor.batch_decode(
|
87 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
88 |
+
)
|
89 |
+
print(output_text)
|
90 |
+
```
|
91 |
+
|
92 |
+
## โ๏ธ Citation
|
93 |
+
|
94 |
+
```bibtex
|
95 |
+
|
96 |
+
@article{li2025videochatr1,
|
97 |
+
title={VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning},
|
98 |
+
author={Li, Xinhao and Yan, Ziang and Meng, Desen and Dong, Lu and Zeng, Xiangyu and He, Yinan and Wang, Yali and Qiao, Yu and Wang, Yi and Wang, Limin},
|
99 |
+
journal={arXiv preprint arXiv:2504.06958},
|
100 |
+
year={2025}
|
101 |
+
}
|
102 |
+
```
|