|
import torch
|
|
import torch.nn as nn
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, embed_size, heads, ff_hidden_dim, dropout):
|
|
super().__init__()
|
|
self.attention = nn.MultiheadAttention(embed_dim=embed_size, num_heads=heads, batch_first=True)
|
|
self.norm1 = nn.LayerNorm(embed_size)
|
|
self.norm2 = nn.LayerNorm(embed_size)
|
|
self.ff = nn.Sequential(
|
|
nn.Linear(embed_size, ff_hidden_dim),
|
|
nn.ReLU(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(ff_hidden_dim, embed_size)
|
|
)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
attn_output, _ = self.attention(x, x, x)
|
|
x = self.norm1(x + self.dropout(attn_output))
|
|
ff_output = self.ff(x)
|
|
x = self.norm2(x + self.dropout(ff_output))
|
|
return x
|
|
|
|
class TransformerModel(nn.Module):
|
|
def __init__(self, vocab_size, embed_size=512, num_heads=8, hidden_dim=2048, num_layers=6, max_len=512, dropout=0.1):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(vocab_size, embed_size)
|
|
self.pos_embedding = nn.Parameter(torch.zeros(1, max_len, embed_size))
|
|
self.transformer_blocks = nn.Sequential(
|
|
*[TransformerBlock(embed_size, num_heads, hidden_dim, dropout) for _ in range(num_layers)]
|
|
)
|
|
self.norm = nn.LayerNorm(embed_size)
|
|
self.output = nn.Linear(embed_size, vocab_size)
|
|
|
|
def forward(self, x):
|
|
seq_len = x.size(1)
|
|
positions = self.pos_embedding[:, :seq_len, :]
|
|
x = self.embedding(x) + positions
|
|
x = self.transformer_blocks(x)
|
|
x = self.norm(x)
|
|
return self.output(x)
|
|
|