|
import torch |
|
import torch.nn as nn |
|
from transformers import PreTrainedModel, AutoModel |
|
from .model_config import CustomConfig |
|
|
|
class LogRegClassifier(nn.Module): |
|
def __init__(self, transformer_output_dim): |
|
super(LogRegClassifier, self).__init__() |
|
self.linear = nn.Linear(transformer_output_dim, 1) |
|
|
|
def forward(self, x): |
|
return torch.sigmoid(self.linear(x)) |
|
|
|
class CombinedModel(PreTrainedModel): |
|
config_class = CustomConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = AutoModel.from_pretrained(config.transformer_type) |
|
self.classifier = LogRegClassifier(config.transformer_output_dim) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask) |
|
pooled_output = outputs.last_hidden_state[:, 0, :] |
|
return self.classifier(pooled_output) |
|
|