|
|
|
import spacy
|
|
from spacy.tokens import Doc, Span
|
|
from transformers import AutoTokenizer, AutoModel
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from rich.console import Console
|
|
from typing import List, Tuple
|
|
import os
|
|
|
|
|
|
|
|
console = Console()
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
console.print(f"Using device: [bold {'green' if device.type == 'cuda' else 'yellow'}]{device}[/bold {'green' if device.type == 'cuda' else 'yellow'}]")
|
|
if device.type == 'cuda': console.print(f"CUDA Device Name: {torch.cuda.get_device_name(0)}")
|
|
|
|
|
|
SPACY_MODEL_NAME = "en_core_web_lg"
|
|
_nlp = None
|
|
|
|
def load_spacy_model(model_name: str = SPACY_MODEL_NAME) -> spacy.language.Language:
|
|
global _nlp
|
|
if _nlp is None:
|
|
try:
|
|
console.print(f"Loading spaCy model '{model_name}'...")
|
|
_nlp = spacy.load(model_name)
|
|
console.print(f"[green]spaCy model '{model_name}' loaded successfully (on CPU).[/green]")
|
|
except OSError:
|
|
console.print(f"[bold red]Error: spaCy model '{model_name}' not found.[/bold red]"); raise
|
|
return _nlp
|
|
|
|
def process_text_spacy(text: str) -> spacy.tokens.Doc:
|
|
spacy_nlp = load_spacy_model()
|
|
if spacy_nlp: return spacy_nlp(text)
|
|
raise RuntimeError("spaCy model could not be loaded or process failed.")
|
|
|
|
|
|
BERT_MODEL_NAME = "bert-base-uncased"
|
|
_tokenizer = None
|
|
_bert_model = None
|
|
|
|
def load_bert(model_name: str = BERT_MODEL_NAME) -> tuple[AutoTokenizer, AutoModel]:
|
|
global _tokenizer, _bert_model
|
|
if _tokenizer is None:
|
|
try:
|
|
console.print(f"Loading BERT tokenizer for '{model_name}'...")
|
|
_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
console.print(f"[green]BERT Tokenizer for '{model_name}' loaded successfully.[/green]")
|
|
except Exception as e: console.print(f"[bold red]Error loading BERT tokenizer '{model_name}': {e}[/bold red]"); raise
|
|
if _bert_model is None:
|
|
try:
|
|
console.print(f"Loading full BERT model '{model_name}'...")
|
|
_bert_model = AutoModel.from_pretrained(model_name)
|
|
_bert_model.to(device); _bert_model.eval()
|
|
console.print(f"[green]Full BERT Model '{model_name}' loaded successfully to [bold]{device}[/bold].[/green]")
|
|
except Exception as e: console.print(f"[bold red]Error loading full BERT model '{model_name}': {e}[/bold red]"); raise
|
|
return _tokenizer, _bert_model
|
|
|
|
def get_bert_embeddings(text: str, max_length: int = 512) -> tuple[torch.Tensor, torch.Tensor]:
|
|
try: tokenizer, model = load_bert()
|
|
except Exception as e: raise RuntimeError(f"Failed to load BERT model or tokenizer: {e}")
|
|
inputs = tokenizer(text, return_tensors="pt", max_length=max_length, padding=True, truncation=True)
|
|
inputs_on_device = {k: v.to(device) for k, v in inputs.items()}
|
|
with torch.no_grad():
|
|
try: outputs = model(**inputs_on_device)
|
|
except Exception as e: console.print(f"[bold red]Error during BERT inference: {e}[/bold red]"); raise RuntimeError(f"BERT inference failed: {e}")
|
|
last_hidden_state = outputs.last_hidden_state; pooler_output = outputs.pooler_output
|
|
return last_hidden_state.cpu().detach(), pooler_output.cpu().detach()
|
|
|
|
def get_sentence_embedding(sentence_text: str, strategy: str = 'mean', max_length: int = 512) -> torch.Tensor:
|
|
""" Tek bir cümlenin embedding'ini hesaplar. """
|
|
|
|
|
|
|
|
try:
|
|
last_hidden_state, _ = get_bert_embeddings(sentence_text, max_length)
|
|
if strategy == 'cls':
|
|
return last_hidden_state[0, 0, :]
|
|
elif strategy == 'mean':
|
|
tokenizer, _ = load_bert()
|
|
inputs = tokenizer(sentence_text, return_tensors="pt", max_length=max_length, padding=True, truncation=True)
|
|
attention_mask = inputs['attention_mask'].cpu()
|
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
|
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
|
|
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
mean_embeddings = sum_embeddings / sum_mask
|
|
return mean_embeddings[0]
|
|
else:
|
|
raise ValueError(f"Unknown strategy: {strategy}")
|
|
except Exception as e:
|
|
console.print(f"[yellow]Warning: Failed to get embedding for sentence '{sentence_text[:50]}...': {e}[/yellow]")
|
|
|
|
return None
|
|
|
|
|
|
|
|
def get_all_sentence_embeddings(doc: Doc, strategy: str = 'mean', max_length: int = 512) -> List[torch.Tensor | None]:
|
|
"""
|
|
Bir spaCy Doc içerisindeki tüm cümlelerin BERT embedding'lerini hesaplar.
|
|
(Mevcut haliyle her cümle için ayrı model çağrısı yapar - verimsiz)
|
|
"""
|
|
console.print(f" -> Calculating BERT sentence embeddings for {len(list(doc.sents))} sentences (Strategy: {strategy})...", style="dim")
|
|
embeddings = []
|
|
for sent in doc.sents:
|
|
embedding = get_sentence_embedding(sent.text, strategy=strategy, max_length=max_length)
|
|
embeddings.append(embedding)
|
|
console.print(f" -> Sentence embeddings calculation complete.", style="dim")
|
|
return embeddings |