|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import types
|
|
from collections.abc import Iterator
|
|
from copy import deepcopy
|
|
from dataclasses import dataclass
|
|
from threading import Thread
|
|
from typing import List
|
|
from typing import Literal
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import soundfile as sf
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.nn.utils.parametrize as P
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from torch.nn.utils.parametrizations import weight_norm
|
|
from tqdm import tqdm
|
|
from transformers import AutoProcessor
|
|
from transformers import BertTokenizerFast
|
|
from transformers import LlamaConfig
|
|
from transformers import LlamaModel
|
|
from transformers import LogitsWarper
|
|
from transformers import PreTrainedModel
|
|
from transformers import Qwen2ForCausalLM
|
|
from transformers import Qwen2PreTrainedModel
|
|
from transformers import TextIteratorStreamer
|
|
from transformers import TopKLogitsWarper
|
|
from transformers import TopPLogitsWarper
|
|
from transformers.cache_utils import Cache
|
|
from transformers.cache_utils import DynamicCache
|
|
from transformers.cache_utils import EncoderDecoderCache
|
|
from transformers.cache_utils import StaticCache
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
from transformers.modeling_outputs import ModelOutput
|
|
from transformers.models.whisper.modeling_whisper import ACT2FN
|
|
from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES
|
|
from transformers.models.whisper.modeling_whisper import WhisperConfig
|
|
from transformers.models.whisper.modeling_whisper import WhisperEncoder
|
|
|
|
try:
|
|
from vector_quantize_pytorch import GroupedResidualFSQ
|
|
from vocos import Vocos
|
|
from vocos.pretrained import instantiate_class
|
|
|
|
_tts_deps = True
|
|
except:
|
|
_tts_deps = False
|
|
|
|
from .configuration_minicpm import ConditionalChatTTSConfig
|
|
from .configuration_minicpm import MiniCPMOConfig
|
|
from .modeling_navit_siglip import SiglipVisionTransformer
|
|
from .resampler import Resampler
|
|
from .utils import NumberToTextConverter
|
|
from .utils import sentence_end
|
|
from .utils import VoiceChecker
|
|
from transformers import AutoModelForCausalLM
|
|
from omni_speech.model import *
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class OmniOutput(ModelOutput):
|
|
text: Optional[Union[str, List[str], Iterator]] = None
|
|
spk_embeds: Optional[torch.FloatTensor] = None
|
|
audio_wav: Optional[np.ndarray] = None
|
|
sampling_rate: Optional[int] = None
|
|
|
|
|
|
class MiniCPMOPreTrainedModel(Qwen2PreTrainedModel):
|
|
config_class = MiniCPMOConfig
|
|
|
|
|
|
class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.llm = Qwen2ForCausalLM(config)
|
|
if self.config.pretrained_llm_path:
|
|
try:
|
|
print("Load pretrained LLM!")
|
|
self.llm = AutoModelForCausalLM.from_pretrained(self.config.pretrained_llm_path)
|
|
except:
|
|
print("Load pretrained LLM from MiniCPMo!")
|
|
minicpm_mod = MiniCPMO.from_pretrained(self.config.pretrained_llm_path)
|
|
self.llm.load_state_dict(minicpm_mod.llm.state_dict(), strict=True)
|
|
self.llm.prepare_inputs_for_generation = types.MethodType(prepare_inputs_for_generation, self.llm)
|
|
|
|
self.embed_dim = self.llm.config.hidden_size
|
|
|
|
|
|
if self.config.init_vision:
|
|
self.vpm = self.init_vision_module()
|
|
self.vision_dim = self.vpm.embed_dim
|
|
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
|
|
|
|
|
|
if self.config.init_audio:
|
|
self.apm = self.init_audio_module()
|
|
audio_output_dim = int(self.apm.config.encoder_ffn_dim // 4)
|
|
self.audio_avg_pooler = nn.AvgPool1d(self.config.audio_pool_step, stride=self.config.audio_pool_step)
|
|
self.audio_projection_layer = MultiModalProjector(in_dim=audio_output_dim, out_dim=self.embed_dim)
|
|
self.audio_encoder_layer = -1
|
|
if self.config.pretrained_encoder_path is not None:
|
|
print("Load pretrained speech adapter!!!")
|
|
|
|
avg_pooler_path = "/data1/speech/anhnmt2/cuongnm/whisper_streaming/speech_encoder/weights/audio_avg_pooler_weights.pth"
|
|
apm_path = "/data1/speech/anhnmt2/cuongnm/whisper_streaming/speech_encoder/weights/apm_weights.pth"
|
|
minicpm_model = MiniCPMO.from_pretrained(self.config.pretrained_encoder_path)
|
|
self.audio_avg_pooler.load_state_dict(torch.load(avg_pooler_path), strict=True)
|
|
self.apm.load_state_dict(torch.load(apm_path), strict=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config.init_tts:
|
|
assert _tts_deps, "please make sure vector_quantize_pytorch and vocos are installed."
|
|
self.tts = self.init_tts_module()
|
|
|
|
if self.config.processor_path is not None:
|
|
self.processor = AutoProcessor.from_pretrained(self.config.processor_path, trust_remote_code=True)
|
|
else:
|
|
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
|
|
|
self.terminators = ["<|im_end|>", "<|endoftext|>"]
|
|
|
|
self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
|
|
self.force_no_stop = False
|
|
|
|
|
|
self.reset_session()
|
|
|
|
|
|
self.post_init()
|
|
|
|
def reset_session(self):
|
|
self.session_id = None
|
|
self.new_user_msg = True
|
|
self.llm_generated = False
|
|
self.llm_generate_completed = False
|
|
self.llm_past_key_values = None
|
|
self.audio_past_key_values = None
|
|
|
|
def init_tts(
|
|
self,
|
|
tts_text_tokenizer_path=None,
|
|
vocos_ckpt_path=None,
|
|
):
|
|
"""
|
|
load tts tokenizer and vocos
|
|
1. try load form local 2. try load from huggingface
|
|
"""
|
|
from .processing_minicpmo import ChatTTSProcessor
|
|
|
|
if tts_text_tokenizer_path is None:
|
|
tts_text_tokenizer_path = os.path.join(self.config._name_or_path, "assets/chattts_tokenizer")
|
|
if not os.path.exists(tts_text_tokenizer_path):
|
|
|
|
tts_text_tokenizer_path = "openbmb/chattts_tokenizer"
|
|
|
|
tts_text_tokenizer = BertTokenizerFast.from_pretrained(tts_text_tokenizer_path)
|
|
self.tts_processor = ChatTTSProcessor(text_tokenizer=tts_text_tokenizer)
|
|
|
|
if vocos_ckpt_path is None:
|
|
vocos_ckpt_path = os.path.join(self.config._name_or_path, "assets/Vocos.pt")
|
|
if not os.path.exists(vocos_ckpt_path):
|
|
vocos_ckpt_path = hf_hub_download(repo_id="openbmb/MiniCPM-o-2_6", subfolder="assets", filename="Vocos.pt")
|
|
|
|
assert os.path.exists(vocos_ckpt_path)
|
|
self.vocos = self.initialize_vocos(vocos_ckpt_path)
|
|
|
|
def initialize_vocos(self, ckpt_path):
|
|
feature_extractor = instantiate_class(
|
|
args=(),
|
|
init={
|
|
"class_path": "vocos.feature_extractors.MelSpectrogramFeatures",
|
|
"init_args": {"sample_rate": 24000, "n_fft": 1024, "hop_length": 256, "n_mels": 100},
|
|
},
|
|
)
|
|
backbone = instantiate_class(
|
|
args=(),
|
|
init={
|
|
"class_path": "vocos.models.VocosBackbone",
|
|
"init_args": {"input_channels": 100, "dim": 512, "intermediate_dim": 1536, "num_layers": 8},
|
|
},
|
|
)
|
|
head = instantiate_class(
|
|
args=(),
|
|
init={"class_path": "vocos.heads.ISTFTHead", "init_args": {"dim": 512, "n_fft": 1024, "hop_length": 256}},
|
|
)
|
|
vocos = Vocos(feature_extractor, backbone, head).to("cuda").eval().to(torch.float32)
|
|
vocos.load_state_dict(torch.load(ckpt_path, weights_only=True, mmap=True))
|
|
return vocos
|
|
|
|
def init_vision_module(self):
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
self.config.vision_config._attn_implementation = "flash_attention_2"
|
|
else:
|
|
self.config.vision_config._attn_implementation = "eager"
|
|
model = SiglipVisionTransformer(self.config.vision_config)
|
|
if self.config.drop_vision_last_layer:
|
|
model.encoder.layers = model.encoder.layers[:-1]
|
|
|
|
setattr(model, "embed_dim", model.embeddings.embed_dim)
|
|
setattr(model, "patch_size", model.embeddings.patch_size)
|
|
|
|
return model
|
|
|
|
def init_resampler(self, embed_dim, vision_dim):
|
|
return Resampler(
|
|
num_queries=self.config.query_num,
|
|
embed_dim=embed_dim,
|
|
num_heads=embed_dim // 128,
|
|
kv_dim=vision_dim,
|
|
adaptive=True,
|
|
)
|
|
|
|
def init_audio_module(self):
|
|
model = MiniCPMWhisperEncoder(self.config.audio_config)
|
|
if self.config.pretrained_encoder_path is not None:
|
|
try:
|
|
print("Load pretrained model from Whisper!!!")
|
|
from transformers import WhisperForConditionalGeneration
|
|
pretrained_model = WhisperForConditionalGeneration.from_pretrained(self.config.pretrained_encoder_path)
|
|
model.load_state_dict(pretrained_model.model.encoder.state_dict(), strict=True)
|
|
except:
|
|
print("Load pretrained speech encoder from MiniCPMo!!!")
|
|
minicpm_model = MiniCPMO.from_pretrained(self.config.pretrained_encoder_path)
|
|
model.load_state_dict(minicpm_model.apm.state_dict(), strict=True)
|
|
return model
|
|
|
|
def init_tts_module(self):
|
|
model = ConditionalChatTTS(self.config.tts_config)
|
|
return model
|
|
|
|
def get_input_embeddings(self):
|
|
return self.llm.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.llm.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.llm.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.llm.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.llm = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.llm
|
|
|
|
def subsequent_chunk_mask(
|
|
self,
|
|
size: int,
|
|
chunk_size: int,
|
|
num_left_chunks: int = -1,
|
|
device: torch.device = torch.device("cpu"),
|
|
num_lookhead: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Create mask for subsequent steps (size, size) with chunk size,
|
|
this is for streaming encoder
|
|
|
|
Args:
|
|
size (int): size of mask
|
|
chunk_size (int): size of chunk
|
|
num_left_chunks (int): number of left chunks
|
|
<0: use full chunk
|
|
>=0: use num_left_chunks
|
|
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
|
|
|
Returns:
|
|
torch.Tensor: mask
|
|
|
|
Examples:
|
|
>>> subsequent_chunk_mask(4, 2)
|
|
[[1, 1, 0, 0],
|
|
[1, 1, 0, 0],
|
|
[1, 1, 1, 1],
|
|
[1, 1, 1, 1]]
|
|
"""
|
|
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
|
for i in range(size):
|
|
if num_left_chunks < 0:
|
|
start = 0
|
|
else:
|
|
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
|
|
ending = min((i // chunk_size + 1) * chunk_size + num_lookhead, size)
|
|
ret[i, start:ending] = True
|
|
return ret
|
|
|
|
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
|
"""
|
|
Computes the output length of the convolutional layers and the output length of the audio encoder
|
|
"""
|
|
input_lengths_after_cnn = (input_lengths - 1) // 2 + 1
|
|
input_lengths_after_pooling = (
|
|
input_lengths_after_cnn - self.config.audio_pool_step
|
|
) // self.config.audio_pool_step + 1
|
|
input_lengths_after_pooling = input_lengths_after_pooling.to(dtype=torch.int32)
|
|
|
|
return input_lengths_after_cnn, input_lengths_after_pooling
|
|
|
|
def get_vllm_embedding(self, data):
|
|
"""
|
|
Compute all visual embeddings, and set into llm embeddings.
|
|
Args:
|
|
data: Dict
|
|
tgt_sizes: image size after patch embedding
|
|
pixel_values: image features
|
|
image_bound: position of each picture corresponding to input_ids
|
|
input_ids: full input_ids, include placeholder
|
|
Returns:
|
|
embedding with vision, vision_hidden_states
|
|
"""
|
|
if "vision_hidden_states" not in data:
|
|
dtype = self.llm.model.embed_tokens.weight.dtype
|
|
device = self.llm.model.embed_tokens.weight.device
|
|
tgt_sizes = data["tgt_sizes"]
|
|
pixel_values_list = data["pixel_values"]
|
|
vision_hidden_states = []
|
|
all_pixel_values = []
|
|
img_cnt = []
|
|
for pixel_values in pixel_values_list:
|
|
img_cnt.append(len(pixel_values))
|
|
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
|
|
|
|
|
|
if all_pixel_values:
|
|
tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
|
|
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
|
|
|
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
|
|
|
|
all_pixel_values = torch.nn.utils.rnn.pad_sequence(
|
|
all_pixel_values, batch_first=True, padding_value=0.0
|
|
)
|
|
B, L, _ = all_pixel_values.shape
|
|
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
|
|
|
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
|
|
for i in range(B):
|
|
patch_attn_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True
|
|
|
|
vision_batch_size = self.config.vision_batch_size
|
|
all_pixel_values = all_pixel_values.type(dtype)
|
|
if B > vision_batch_size:
|
|
hs = []
|
|
for i in range(0, B, vision_batch_size):
|
|
start_idx = i
|
|
end_idx = i + vision_batch_size
|
|
tmp_hs = self.vpm(
|
|
all_pixel_values[start_idx:end_idx],
|
|
patch_attention_mask=patch_attn_mask[start_idx:end_idx],
|
|
tgt_sizes=tgt_sizes[start_idx:end_idx],
|
|
).last_hidden_state
|
|
hs.append(tmp_hs)
|
|
vision_embedding = torch.cat(hs, dim=0)
|
|
else:
|
|
vision_embedding = self.vpm(
|
|
all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes
|
|
).last_hidden_state
|
|
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
|
|
|
|
start = 0
|
|
for pixel_values in pixel_values_list:
|
|
img_cnt = len(pixel_values)
|
|
if img_cnt > 0:
|
|
vision_hidden_states.append(vision_embedding[start : start + img_cnt])
|
|
start += img_cnt
|
|
else:
|
|
vision_hidden_states.append([])
|
|
else:
|
|
if self.training:
|
|
dummy_image = torch.zeros((1, 3, 224, 224), device=device, dtype=dtype)
|
|
tgt_sizes = torch.Tensor(
|
|
[[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]
|
|
).type(torch.int32)
|
|
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
|
|
else:
|
|
dummy_feature = []
|
|
for _ in range(len(pixel_values_list)):
|
|
vision_hidden_states.append(dummy_feature)
|
|
|
|
else:
|
|
vision_hidden_states = data["vision_hidden_states"]
|
|
|
|
if hasattr(self.llm.config, "scale_emb"):
|
|
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
|
|
else:
|
|
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])
|
|
|
|
new_vllm_embedding = vllm_embedding.clone()
|
|
|
|
vision_hidden_states = [
|
|
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
|
|
]
|
|
|
|
bs = len(data["input_ids"])
|
|
for i in range(bs):
|
|
cur_vs_hs = vision_hidden_states[i]
|
|
if len(cur_vs_hs) > 0:
|
|
cur_vllm_emb = vllm_embedding[i]
|
|
cur_image_bound = data["image_bound"][i]
|
|
if len(cur_image_bound) > 0:
|
|
image_indices = torch.stack(
|
|
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
|
).to(vllm_embedding.device)
|
|
|
|
new_vllm_embedding[i] = cur_vllm_emb.scatter(
|
|
0,
|
|
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
|
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
|
|
)
|
|
|
|
elif self.training:
|
|
new_vllm_embedding[i] += cur_vs_hs[0].mean() * 0
|
|
|
|
return new_vllm_embedding, vision_hidden_states
|
|
|
|
def get_audio_embedding_streaming(self, data):
|
|
r"""
|
|
Extract audio embeddings in a streaming manner using cached key-value pairs.
|
|
|
|
This method processes incoming audio features incrementally and stores/updates `past_key_values`
|
|
for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended
|
|
for streaming scenarios.
|
|
|
|
Args:
|
|
data (dict):
|
|
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
|
|
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
|
|
|
|
Returns:
|
|
List[List[torch.Tensor]]: audio embeddings
|
|
"""
|
|
wavforms = data.get("audio_features", [])
|
|
audio_feature_lens_raw = data.get("audio_feature_lens", [])
|
|
|
|
|
|
if len(wavforms) > 0:
|
|
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
|
|
batch_size, _, max_mel_seq_len = wavforms.shape
|
|
assert batch_size == 1
|
|
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
|
|
|
|
if self.audio_past_key_values is not None:
|
|
cache_length = self.audio_past_key_values[0][0].shape[2]
|
|
apm_max_len = self.apm.embed_positions.weight.shape[0]
|
|
if cache_length + max_seq_len >= apm_max_len:
|
|
logger.warning(
|
|
f"audio_past_key_values length {cache_length + max_seq_len} exceed {apm_max_len}, reset."
|
|
)
|
|
self.audio_past_key_values = None
|
|
|
|
audio_outputs = self.apm(wavforms, past_key_values=self.audio_past_key_values, use_cache=True)
|
|
audio_states = audio_outputs.last_hidden_state
|
|
self.audio_past_key_values = audio_outputs.past_key_values
|
|
|
|
audio_embeds = self.audio_projection_layer(audio_states)
|
|
|
|
audio_embeds = audio_embeds.transpose(1, 2)
|
|
audio_embeds = self.audio_avg_pooler(audio_embeds)
|
|
audio_embeds = audio_embeds.transpose(1, 2)
|
|
|
|
_, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)
|
|
|
|
num_audio_tokens = feature_lens_after_pooling
|
|
|
|
final_audio_embeds = []
|
|
idx = 0
|
|
for i in range(len(audio_feature_lens_raw)):
|
|
target_audio_embeds = []
|
|
for _ in range(len(audio_feature_lens_raw[i])):
|
|
target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
|
|
idx += 1
|
|
final_audio_embeds.append(target_audio_embeds)
|
|
return final_audio_embeds
|
|
else:
|
|
return []
|
|
|
|
|
|
def get_audio_hidden_states(self, data,
|
|
chunk_length = -1) -> torch.Tensor:
|
|
wavforms = data.get(
|
|
"audio_features",
|
|
[])
|
|
audio_feature_lens_raw = data.get("audio_feature_lens", [])
|
|
|
|
|
|
|
|
|
|
if len(wavforms) > 0:
|
|
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
|
|
batch_size, _, max_mel_seq_len = wavforms.shape
|
|
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
|
|
|
|
|
|
seq_range = (torch.arange(
|
|
0,
|
|
max_seq_len,
|
|
dtype=audio_feature_lens.dtype,
|
|
device=audio_feature_lens.device).unsqueeze(0).expand(
|
|
batch_size, max_seq_len))
|
|
lengths_expand = audio_feature_lens.unsqueeze(1).expand(
|
|
batch_size, max_seq_len)
|
|
|
|
padding_mask = seq_range >= lengths_expand
|
|
|
|
audio_attention_mask_ = padding_mask.view(
|
|
batch_size, 1, 1, max_seq_len).expand(batch_size, 1,
|
|
max_seq_len, max_seq_len)
|
|
audio_attention_mask = audio_attention_mask_.to(
|
|
dtype=self.apm.conv1.weight.dtype,
|
|
device=self.apm.conv1.weight.device)
|
|
|
|
if chunk_length > 0:
|
|
chunk_num_frame = int(chunk_length * 50)
|
|
chunk_mask = self.subsequent_chunk_mask(
|
|
size=max_seq_len,
|
|
chunk_size=chunk_num_frame,
|
|
num_left_chunks=-1,
|
|
device=audio_attention_mask_.device,
|
|
)
|
|
audio_attention_mask_ = torch.logical_or(
|
|
audio_attention_mask_, torch.logical_not(chunk_mask))
|
|
|
|
audio_attention_mask[audio_attention_mask_] = float("-inf")
|
|
audio_states = self.apm(
|
|
wavforms, output_hidden_states=True, attention_mask=audio_attention_mask
|
|
).hidden_states[self.audio_encoder_layer]
|
|
audio_embeds = self.audio_projection_layer(audio_states)
|
|
|
|
audio_embeds = audio_embeds.transpose(1, 2)
|
|
audio_embeds = self.audio_avg_pooler(audio_embeds)
|
|
audio_embeds = audio_embeds.transpose(1, 2)
|
|
|
|
_, feature_lens_after_pooling = \
|
|
self._get_feat_extract_output_lengths(audio_feature_lens)
|
|
|
|
num_audio_tokens = feature_lens_after_pooling
|
|
|
|
final_audio_embeds = []
|
|
idx = 0
|
|
for i in range(len(audio_feature_lens_raw)):
|
|
target_audio_embeds = []
|
|
for _ in range(len(audio_feature_lens_raw[i])):
|
|
target_audio_embeds.append(
|
|
audio_embeds[idx, :num_audio_tokens[idx], :])
|
|
idx += 1
|
|
final_audio_embeds.append(target_audio_embeds)
|
|
return final_audio_embeds
|
|
else:
|
|
return []
|
|
|
|
|
|
def get_audio_embedding(self, data, chunk_length=-1):
|
|
r"""
|
|
Extract full audio embeddings with optional chunk-based attention.
|
|
|
|
This method computes embeddings for all audio frames at once, either using full attention (when
|
|
`chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does
|
|
not use key-value caching and is suitable for non-streaming inference.
|
|
|
|
Args:
|
|
data (dict):
|
|
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
|
|
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
|
|
chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based
|
|
attention (>0) during embedding computation.
|
|
|
|
Returns:
|
|
List[List[torch.Tensor]]: audio embeddings
|
|
"""
|
|
|
|
wavforms = data.get("audio_features", [])
|
|
audio_feature_lens_raw = data.get("audio_feature_lens", [])
|
|
|
|
|
|
if len(wavforms) > 0:
|
|
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
|
|
batch_size, _, max_mel_seq_len = wavforms.shape
|
|
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
|
|
|
|
|
|
seq_range = (
|
|
torch.arange(0, max_seq_len, dtype=audio_feature_lens.dtype, device=audio_feature_lens.device)
|
|
.unsqueeze(0)
|
|
.expand(batch_size, max_seq_len)
|
|
)
|
|
lengths_expand = audio_feature_lens.unsqueeze(1).expand(batch_size, max_seq_len)
|
|
|
|
padding_mask = seq_range >= lengths_expand
|
|
|
|
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
|
|
batch_size, 1, max_seq_len, max_seq_len
|
|
)
|
|
audio_attention_mask = audio_attention_mask_.to(
|
|
dtype=self.apm.conv1.weight.dtype, device=self.apm.conv1.weight.device
|
|
)
|
|
|
|
if chunk_length > 0:
|
|
chunk_num_frame = int(chunk_length * 50)
|
|
chunk_mask = self.subsequent_chunk_mask(
|
|
size=max_seq_len,
|
|
chunk_size=chunk_num_frame,
|
|
num_left_chunks=-1,
|
|
device=audio_attention_mask_.device,
|
|
)
|
|
audio_attention_mask_ = torch.logical_or(audio_attention_mask_, torch.logical_not(chunk_mask))
|
|
|
|
audio_attention_mask[audio_attention_mask_] = float("-inf")
|
|
audio_states = self.apm(
|
|
wavforms, output_hidden_states=True, attention_mask=audio_attention_mask
|
|
).hidden_states[self.audio_encoder_layer]
|
|
audio_embeds = self.audio_projection_layer(audio_states)
|
|
|
|
audio_embeds = audio_embeds.transpose(1, 2)
|
|
audio_embeds = self.audio_avg_pooler(audio_embeds)
|
|
audio_embeds = audio_embeds.transpose(1, 2)
|
|
|
|
_, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)
|
|
|
|
num_audio_tokens = feature_lens_after_pooling
|
|
|
|
final_audio_embeds = []
|
|
idx = 0
|
|
for i in range(len(audio_feature_lens_raw)):
|
|
target_audio_embeds = []
|
|
for _ in range(len(audio_feature_lens_raw[i])):
|
|
target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
|
|
idx += 1
|
|
final_audio_embeds.append(target_audio_embeds)
|
|
return final_audio_embeds
|
|
else:
|
|
return []
|
|
|
|
def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
|
|
"""
|
|
Args:
|
|
data:
|
|
input_embeddings:
|
|
chunk_length: whisper use full attention or chunk attention
|
|
stream_input: use streaming audio embedding
|
|
Returns:
|
|
final embeddings with audio feature
|
|
"""
|
|
if stream_input:
|
|
audio_embeddings = self.get_audio_embedding_streaming(data)
|
|
else:
|
|
audio_embeddings = self.get_audio_embedding(data, chunk_length)
|
|
|
|
bs = len(input_embeddings)
|
|
if len(data.get("audio_features", [])) > 0:
|
|
assert len(audio_embeddings) == len(input_embeddings)
|
|
if len(audio_embeddings) > 0:
|
|
audio_bounds = data["audio_bounds"]
|
|
|
|
if self.config.chunk_input:
|
|
for i in range(bs):
|
|
audio_embs = torch.cat(audio_embeddings[i], dim=0).to(
|
|
device=input_embeddings.device, dtype=input_embeddings.dtype
|
|
)
|
|
audio_start_pos = 0
|
|
for bound in audio_bounds[i]:
|
|
audio_len = bound[1] - bound[0]
|
|
input_embeddings[0, bound[0] : bound[1]] = audio_embs[
|
|
audio_start_pos : audio_start_pos + audio_len, :
|
|
]
|
|
audio_start_pos += audio_len
|
|
else:
|
|
for i in range(bs):
|
|
audio_embs = audio_embeddings[i]
|
|
bounds = audio_bounds[i]
|
|
for embs, bound in zip(audio_embs, bounds):
|
|
audio_indices = torch.arange(bound[0], bound[1], dtype=torch.long).to(
|
|
input_embeddings.device
|
|
)
|
|
|
|
if embs.shape[0] != len(audio_indices):
|
|
|
|
|
|
|
|
|
|
print(
|
|
f"Shape mismatch: Trying to assign embeddings of shape {embs.shape} "
|
|
f"to input indices of length {len(audio_indices)}"
|
|
)
|
|
if embs.shape[0] > len(audio_indices):
|
|
embs = embs[: len(audio_indices)]
|
|
elif embs.shape[0] < len(audio_indices):
|
|
padding = torch.zeros((len(audio_indices) - embs.shape[0], embs.shape[1]), dtype=embs.dtype, device=embs.device)
|
|
embs = torch.cat([embs, padding], dim=0)
|
|
|
|
input_embeddings[i, audio_indices] = embs.to(input_embeddings.dtype)
|
|
elif self.training:
|
|
for i in range(bs):
|
|
|
|
audio_features = torch.zeros((1, 80, 500), device=input_embeddings.device, dtype=input_embeddings.dtype)
|
|
audio_feature_lens = [torch.tensor([500], device=input_embeddings.device, dtype=input_embeddings.dtype)]
|
|
data = {"audio_features": audio_features, "audio_feature_lens": audio_feature_lens}
|
|
audio_embeddings = self.get_audio_embedding(data, chunk_length)
|
|
input_embeddings = input_embeddings + audio_embeddings[0][0].mean() * 0
|
|
|
|
return input_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, **kwargs):
|
|
data = kwargs
|
|
if self.config.init_vision:
|
|
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
|
else:
|
|
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])
|
|
|
|
if self.config.init_audio:
|
|
vllm_embedding = self.get_omni_embedding(
|
|
data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
|
|
)
|
|
|
|
position_ids = data["position_ids"]
|
|
if position_ids.dtype != torch.int64:
|
|
position_ids = position_ids.long()
|
|
|
|
|
|
for key in ["input_ids", "inputs_embeds", "position_ids", "pixel_values", "image_sizes", "image_bound", "tgt_sizes", "audio_bounds", "spk_bounds", "audio_features", "audio_feature_lens"]:
|
|
if key in kwargs:
|
|
del kwargs[key]
|
|
|
|
kwargs["labels"] = kwargs["labels"].type(torch.LongTensor)
|
|
|
|
return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
|
|
|
|
def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
|
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
|
outputs = self.llm.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
pad_token_id=0,
|
|
eos_token_id=terminators,
|
|
attention_mask=attention_mask,
|
|
output_hidden_states=True,
|
|
return_dict_in_generate=True,
|
|
**kwargs,
|
|
)
|
|
|
|
return outputs
|
|
|
|
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
|
streamer = TextIteratorStreamer(tokenizer=tokenizer)
|
|
generation_kwargs = {
|
|
"inputs_embeds": inputs_embeds,
|
|
"pad_token_id": 0,
|
|
"eos_token_id": terminators,
|
|
"streamer": streamer,
|
|
}
|
|
generation_kwargs.update(kwargs)
|
|
|
|
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
|
|
thread.start()
|
|
|
|
return streamer
|
|
|
|
def _decode_text(self, result_ids, tokenizer):
|
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
|
result_text = []
|
|
for result in result_ids:
|
|
result = result[result != 0]
|
|
if result[0] == tokenizer.bos_id:
|
|
result = result[1:]
|
|
if result[-1] in terminators:
|
|
result = result[:-1]
|
|
result_text.append(tokenizer.decode(result))
|
|
return result_text
|
|
|
|
def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"):
|
|
"""
|
|
Choose different system prompts according to different tasks
|
|
Args:
|
|
ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice
|
|
generated by the model will refer to the timbre of ref audio
|
|
mode:
|
|
"default": default system prompt and not refer to any task
|
|
"omni": input video and audio simultaneously
|
|
"audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user's question as a helpful assistant.
|
|
"audio_roleplay": Roleplay voice-only mode, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt.
|
|
"voice_cloning": TTS mode, the model will clone the voice of ref_audio.
|
|
language: prompts language, the model has the ability to automatically select the response language
|
|
based on the question language
|
|
Returns:
|
|
|
|
"""
|
|
if ref_audio is not None:
|
|
assert isinstance(ref_audio, np.ndarray), "ref_audio error"
|
|
if mode == "omni":
|
|
if language == "zh":
|
|
sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。"
|
|
vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。"
|
|
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
|
|
else:
|
|
sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. "
|
|
vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt."
|
|
vc_prompt_suffix = "As an assistant, you will speak using this voice style."
|
|
|
|
if ref_audio is not None:
|
|
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
|
|
|
else:
|
|
sys_msgs = {"role": "user", "content": [sys_prompt]}
|
|
|
|
return sys_msgs
|
|
elif mode == "audio_assistant":
|
|
if language == "zh":
|
|
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
|
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
|
|
else:
|
|
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
|
|
vc_prompt_suffix = "As an assistant, you will speak using this voice style."
|
|
|
|
if ref_audio is not None:
|
|
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
|
|
|
else:
|
|
logger.warning(
|
|
"Warning: ref_audio is None, speech generation will be performed based on the default voice."
|
|
)
|
|
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
|
|
|
|
return sys_msgs
|
|
elif mode == "audio_roleplay":
|
|
if language == "zh":
|
|
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
|
vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。"
|
|
else:
|
|
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
|
|
vc_prompt_suffix = "Try to role-play the character based on the audio prompt above."
|
|
|
|
if ref_audio is not None:
|
|
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
|
else:
|
|
print("Warning: ref_audio is None, speech generation will be performed based on the default voice.")
|
|
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
|
|
|
|
return sys_msgs
|
|
elif mode == "voice_cloning":
|
|
if language == "zh":
|
|
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
|
else:
|
|
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
|
|
|
|
if ref_audio is not None:
|
|
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]}
|
|
else:
|
|
raise ValueError("ref_audio con't be None in voice_cloning mode.")
|
|
|
|
return sys_msgs
|
|
else:
|
|
sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text."
|
|
sys_msgs = {"role": "user", "content": [sys_prompt]}
|
|
|
|
return sys_msgs
|
|
|
|
def generate(
|
|
self,
|
|
input_ids=None,
|
|
pixel_values=None,
|
|
tgt_sizes=None,
|
|
audio_features=[],
|
|
audio_feature_lens=None,
|
|
image_bound=None,
|
|
audio_bounds=None,
|
|
spk_bounds=None,
|
|
attention_mask=None,
|
|
tokenizer=None,
|
|
vision_hidden_states=None,
|
|
stream=False,
|
|
**kwargs,
|
|
):
|
|
assert input_ids is not None
|
|
assert len(input_ids) == len(pixel_values)
|
|
|
|
model_inputs = {
|
|
"input_ids": input_ids,
|
|
"audio_features": audio_features,
|
|
"audio_feature_lens": audio_feature_lens,
|
|
"image_bound": image_bound,
|
|
"audio_bounds": audio_bounds,
|
|
"spk_bounds": spk_bounds,
|
|
}
|
|
|
|
if vision_hidden_states is None:
|
|
model_inputs["pixel_values"] = pixel_values
|
|
model_inputs["tgt_sizes"] = tgt_sizes
|
|
else:
|
|
model_inputs["vision_hidden_states"] = vision_hidden_states
|
|
|
|
model_output = {}
|
|
with torch.inference_mode():
|
|
if self.config.init_vision:
|
|
model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
|
|
else:
|
|
model_inputs["inputs_embeds"] = self.llm.model.embed_tokens(model_inputs["input_ids"])
|
|
model_inputs["inputs_embeds"] = self.get_omni_embedding(
|
|
model_inputs,
|
|
input_embeddings=model_inputs["inputs_embeds"],
|
|
chunk_length=self.config.audio_chunk_length,
|
|
)
|
|
|
|
if stream:
|
|
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
|
|
|
|
outputs = {}
|
|
else:
|
|
outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs)
|
|
|
|
result = self._decode_text(outputs.sequences, tokenizer)
|
|
|
|
return result, outputs
|
|
|
|
def chat(
|
|
self,
|
|
image=None,
|
|
msgs=None,
|
|
tokenizer=None,
|
|
processor=None,
|
|
vision_hidden_states=None,
|
|
max_new_tokens=2048,
|
|
min_new_tokens=0,
|
|
sampling=True,
|
|
max_inp_length=32768,
|
|
stream=False,
|
|
chunk_input=True,
|
|
omni_input=False,
|
|
max_slice_nums=None,
|
|
use_image_id=None,
|
|
use_tts_template=False,
|
|
generate_audio=False,
|
|
return_spk_embed=False,
|
|
return_dict=False,
|
|
output_audio_path=None,
|
|
fc=None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Unified chat function
|
|
|
|
Args:
|
|
image: use for batch_size=1 vqa, It is not recommended to continue to use this parameter
|
|
msgs: the input chat msgs, support text: (string) / image: (PIL.Image) / audio (numpy.ndarray)
|
|
tokenizer: tokenizer for llm
|
|
processor: if None, use the default processor
|
|
max_new_tokens: the maximum length of the generation
|
|
min_new_tokens: the minimum length of the generation
|
|
sampling: whether to use sampling decoding or beam search decoding
|
|
max_inp_length: the maximum length of input
|
|
stream: whether to return generator, only used when tts is not required
|
|
chunk_input: whether to split audio into 1s chunks
|
|
omni_input: determine whether it is omni mode
|
|
max_slice_nums: control the maximum number of image slices
|
|
use_image_id: for video understanding or omni understanding, use_image_id should be False
|
|
use_tts_template: if the msgs contain audio, use_tts_template should be True
|
|
generate_audio: whether to generate audio output, only used when return_dict=True
|
|
return_spk_embed: whether to return spk embedding, only used when return_dict=True
|
|
return_dict: whether to return dict
|
|
output_audio_path: audio save path when generate_audio
|
|
**kwargs:
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(msgs[0], list):
|
|
batched = True
|
|
else:
|
|
batched = False
|
|
|
|
if generate_audio or return_spk_embed:
|
|
return_dict = True
|
|
|
|
msgs_list = msgs
|
|
images_list = image
|
|
|
|
if batched is False:
|
|
images_list, msgs_list = [images_list], [msgs_list]
|
|
else:
|
|
assert images_list is None, "Please integrate image to msgs when using batch inference."
|
|
images_list = [None] * len(msgs_list)
|
|
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
|
|
|
|
if processor is None:
|
|
if self.processor is None:
|
|
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
|
processor = self.processor
|
|
|
|
assert (
|
|
self.config.query_num == processor.image_processor.image_feature_size
|
|
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
assert (
|
|
self.config.patch_size == processor.image_processor.patch_size
|
|
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
assert (
|
|
self.config.use_image_id == processor.image_processor.use_image_id
|
|
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
assert (
|
|
self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
|
|
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
assert (
|
|
self.config.slice_mode == processor.image_processor.slice_mode
|
|
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
|
|
prompts_lists = []
|
|
input_images_list = []
|
|
input_audios_list = []
|
|
audio_parts_list = []
|
|
|
|
for image, msgs in zip(images_list, msgs_list):
|
|
if isinstance(msgs, str):
|
|
msgs = json.loads(msgs)
|
|
copy_msgs = deepcopy(msgs)
|
|
|
|
assert len(msgs) > 0, "msgs is empty"
|
|
assert sampling or not stream, "if use stream mode, make sure sampling=True"
|
|
|
|
if image is not None and isinstance(copy_msgs[0]["content"], str):
|
|
copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
|
|
|
|
images = []
|
|
audios = []
|
|
audio_parts = []
|
|
for i, msg in enumerate(copy_msgs):
|
|
role = msg["role"]
|
|
content = msg["content"]
|
|
assert role in ["system", "user", "assistant", "tool"]
|
|
if i == 0:
|
|
assert role in ["user", "system"], "The role of first msg should be user"
|
|
if isinstance(content, str):
|
|
content = [content]
|
|
cur_msgs = []
|
|
for c in content:
|
|
if isinstance(c, Image.Image):
|
|
images.append(c)
|
|
cur_msgs.append("(<image>./</image>)")
|
|
elif isinstance(c, np.ndarray):
|
|
audios.append(c)
|
|
audio_parts.append(i)
|
|
cur_msgs.append("(<audio>./</audio>)")
|
|
|
|
elif isinstance(c, str):
|
|
cur_msgs.append(c)
|
|
if omni_input:
|
|
msg["content"] = "".join(cur_msgs)
|
|
else:
|
|
msg["content"] = "\n".join(cur_msgs)
|
|
|
|
|
|
|
|
prompts = processor.tokenizer.apply_chat_template(
|
|
copy_msgs,
|
|
tokenize=False,
|
|
add_generation_prompt=True,
|
|
chat_template=self.default_tts_chat_template if use_tts_template else None,
|
|
tools=fc,
|
|
)
|
|
|
|
|
|
|
|
prompts_lists.append(
|
|
prompts
|
|
)
|
|
input_images_list.append(images)
|
|
input_audios_list.append(audios)
|
|
audio_parts_list.append(audio_parts)
|
|
|
|
inputs = processor(
|
|
prompts_lists,
|
|
input_images_list,
|
|
input_audios_list,
|
|
audio_parts_list,
|
|
max_slice_nums=max_slice_nums,
|
|
use_image_id=use_image_id,
|
|
chunk_input=chunk_input,
|
|
return_tensors="pt",
|
|
max_length=max_inp_length,
|
|
).to(self.device)
|
|
|
|
if sampling:
|
|
generation_config = {
|
|
"top_p": 0.8,
|
|
"top_k": 100,
|
|
"temperature": 0.7,
|
|
"do_sample": True,
|
|
"repetition_penalty": 1.05,
|
|
}
|
|
else:
|
|
generation_config = {
|
|
"num_beams": 3,
|
|
"repetition_penalty": 1.2,
|
|
}
|
|
|
|
if min_new_tokens > 0:
|
|
generation_config["min_new_tokens"] = min_new_tokens
|
|
|
|
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
|
|
|
|
inputs.pop("image_sizes")
|
|
with torch.inference_mode():
|
|
res, outputs = self.generate(
|
|
**inputs,
|
|
tokenizer=tokenizer,
|
|
max_new_tokens=max_new_tokens,
|
|
vision_hidden_states=vision_hidden_states,
|
|
stream=stream,
|
|
**generation_config,
|
|
)
|
|
|
|
if stream:
|
|
|
|
def stream_gen():
|
|
for text in res:
|
|
for term in self.terminators:
|
|
text = text.replace(term, "")
|
|
yield text
|
|
|
|
if return_dict:
|
|
return OmniOutput(text=stream_gen())
|
|
else:
|
|
return stream_gen()
|
|
|
|
else:
|
|
spk_embeds = wav_numpy = sr = None
|
|
|
|
if batched:
|
|
answer = res
|
|
else:
|
|
answer = res[0]
|
|
|
|
if use_tts_template and generate_audio:
|
|
mel_spec = self._generate_mel_spec(inputs, outputs, answer)
|
|
wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)
|
|
|
|
if return_spk_embed:
|
|
spk_embeds = self._get_last_spk_embeds(inputs, outputs)
|
|
|
|
if isinstance(answer, list):
|
|
answer = [i.replace(tokenizer.tts_end, "") for i in answer]
|
|
else:
|
|
answer = answer.replace(tokenizer.tts_end, "")
|
|
|
|
if return_dict:
|
|
return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
|
|
else:
|
|
return answer
|
|
|
|
@torch.inference_mode()
|
|
def streaming_prefill(
|
|
self,
|
|
session_id,
|
|
msgs,
|
|
tokenizer,
|
|
omni_input=True,
|
|
max_slice_nums=None,
|
|
ls_temperature=1.0,
|
|
fc=None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Streaming video/audio input and output audio stream, Only support batch_size=1
|
|
Args:
|
|
session_id: Note: new connection should use a new session_id
|
|
"""
|
|
assert session_id is not None
|
|
if self.session_id is None or session_id != self.session_id:
|
|
self.is_first = True
|
|
else:
|
|
self.is_first = False
|
|
|
|
images = []
|
|
audios = []
|
|
|
|
assert len(msgs) == 1
|
|
copy_msgs = deepcopy(msgs)
|
|
msg = copy_msgs[0]
|
|
|
|
assert msg["role"] in ["system", "user", "assistant"]
|
|
|
|
content = msg["content"]
|
|
cur_msgs = []
|
|
for j, c in enumerate(content):
|
|
if isinstance(c, Image.Image):
|
|
images.append(c)
|
|
cur_msgs.append("(<image>./</image>)")
|
|
elif isinstance(c, np.ndarray):
|
|
audios.append(c)
|
|
cur_msgs.append("(<audio>./</audio>)")
|
|
elif isinstance(c, str):
|
|
cur_msgs.append(c)
|
|
else:
|
|
logger.error("Invalid content type:", c)
|
|
|
|
cur_contents = "".join(cur_msgs) if omni_input else "\n".join(omni_input)
|
|
if not self.is_first and self.new_user_msg and msg["role"] == "user":
|
|
if self.llm_generated:
|
|
if self.llm_generate_completed:
|
|
msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents
|
|
else:
|
|
msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents
|
|
else:
|
|
msg["content"] = "<|im_start|>user\n" + cur_contents
|
|
self.new_user_msg = False
|
|
else:
|
|
msg["content"] = cur_contents
|
|
|
|
if msg["role"] in ["system", "assistant"]:
|
|
self.new_user_msg = True
|
|
self.audio_past_key_values = None
|
|
|
|
if self.is_first:
|
|
|
|
logger.info(f"new session_id: {session_id}, reset kv cache")
|
|
self.reset_session()
|
|
self.session_id = session_id
|
|
|
|
if fc is None:
|
|
prompt = tokenizer.apply_chat_template(
|
|
copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
|
|
)
|
|
print(prompt)
|
|
else:
|
|
fc_template = "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may response one or more functions to assist with the user query. If the user requests to stop, do not response any function. \\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n"
|
|
|
|
prompt = tokenizer.apply_chat_template(
|
|
copy_msgs, tokenize=False, add_generation_prompt=False, tools=fc, chat_template = fc_template
|
|
)
|
|
print(prompt)
|
|
|
|
add_special_tokens = True
|
|
else:
|
|
prompt = copy_msgs[0]["content"]
|
|
add_special_tokens = False
|
|
|
|
model_inputs = self.processor(
|
|
[prompt],
|
|
[images],
|
|
[audios],
|
|
max_slice_nums=1 if max_slice_nums is None else max_slice_nums,
|
|
use_image_id=False,
|
|
chunk_input=True,
|
|
return_tensors="pt",
|
|
max_length=None,
|
|
sampling_rate=16000,
|
|
add_special_tokens=add_special_tokens,
|
|
).to(self.device)
|
|
|
|
|
|
if self.config.init_vision:
|
|
model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
|
|
else:
|
|
model_inputs["inputs_embeds"] = self.llm.model.embed_tokens(model_inputs["input_ids"])
|
|
|
|
inputs_embeds = self.get_omni_embedding(
|
|
model_inputs, input_embeddings=model_inputs["inputs_embeds"], stream_input=True
|
|
)
|
|
|
|
if self.is_first:
|
|
|
|
self.audio_past_key_values = None
|
|
|
|
if self.llm_past_key_values is not None:
|
|
cache_length = self.llm_past_key_values[0][0].shape[2]
|
|
else:
|
|
cache_length = 0
|
|
|
|
attention_mask = torch.ones((1, cache_length + inputs_embeds.shape[1]), dtype=torch.bool, device=self.device)
|
|
|
|
|
|
outputs = self.llm(
|
|
past_key_values=self.llm_past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
position_ids=None,
|
|
use_cache=True,
|
|
return_dict=True,
|
|
)
|
|
self.llm_past_key_values = outputs["past_key_values"]
|
|
return
|
|
|
|
@torch.inference_mode()
|
|
def streaming_generate(
|
|
self,
|
|
session_id,
|
|
tokenizer,
|
|
max_new_tokens=512,
|
|
min_new_tokens=0,
|
|
sampling=True,
|
|
generate_audio=True,
|
|
enable_regenerate=False,
|
|
tool_response=None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Streaming video/audio input and output audio stream
|
|
Args:
|
|
"""
|
|
if sampling:
|
|
generation_config = {
|
|
"top_p": 0.8,
|
|
"top_k": 100,
|
|
"temperature": 0.7,
|
|
"do_sample": True,
|
|
"repetition_penalty": 1.05,
|
|
}
|
|
else:
|
|
generation_config = {
|
|
"num_beams": 3,
|
|
"repetition_penalty": 1.2,
|
|
}
|
|
generation_config["min_new_tokens"] = min_new_tokens
|
|
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
|
|
|
|
|
|
|
|
self.new_user_msg = True
|
|
self.llm_generated = True
|
|
self.llm_generate_completed = False
|
|
self.audio_past_key_values = None
|
|
|
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
|
if tool_response is None:
|
|
generate_prompt = "<|im_end|>\n<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>"
|
|
else:
|
|
tool_template = "{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n"
|
|
generate_prompt = tokenizer.apply_chat_template(tool_response, tokenize = False, chat_template=tool_template, add_generation_prompt=True)
|
|
|
|
|
|
|
|
input_ids = tokenizer(generate_prompt, return_tensors="pt", add_special_tokens=False)["input_ids"].cuda()
|
|
|
|
spk_start_idx = torch.where(input_ids[0] == tokenizer.spk_start_id)[0]
|
|
spk_end_idx = torch.where(input_ids[0] == tokenizer.spk_end_id)[0]
|
|
spk_bounds = [
|
|
torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
|
|
]
|
|
|
|
cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
|
|
attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)
|
|
|
|
generation_config["max_new_tokens"] = max_new_tokens
|
|
streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
|
|
|
|
if generate_audio:
|
|
result = self._generate_mel_spec_audio_streaming(
|
|
spk_bounds, streamer, output_chunk_size=25, enable_regenerate=enable_regenerate
|
|
)
|
|
return result
|
|
else:
|
|
return streamer
|
|
|
|
def llm_generate_chunk(self, input_ids, attention_mask, tokenizer, terminators, generation_config):
|
|
def check_uncompleted_token(ids):
|
|
cur_text = tokenizer.decode(ids)
|
|
end = len(ids)
|
|
while cur_text[-1] == "�":
|
|
end -= 1
|
|
if end == 0:
|
|
break
|
|
cur_text = tokenizer.decode(ids[:end])
|
|
return end
|
|
|
|
max_new_tokens = int(generation_config.pop("max_new_tokens", 2048))
|
|
new_len = 0
|
|
first_chunk = True
|
|
eos = False
|
|
left_ids = None
|
|
|
|
while True:
|
|
outputs = self.llm.generate(
|
|
input_ids=input_ids,
|
|
past_key_values=self.llm_past_key_values,
|
|
attention_mask=attention_mask,
|
|
use_cache=True,
|
|
max_new_tokens=3,
|
|
pad_token_id=0,
|
|
output_hidden_states=True if first_chunk else False,
|
|
return_dict_in_generate=True,
|
|
eos_token_id=terminators,
|
|
**generation_config,
|
|
)
|
|
if outputs.sequences[0, -1] in terminators:
|
|
eos = True
|
|
input_len = input_ids.shape[1]
|
|
cur_ids = outputs.sequences[:, input_len:]
|
|
new_len += cur_ids.shape[1]
|
|
|
|
if left_ids is not None and left_ids.shape[1] > 0:
|
|
cur_ids = torch.cat([left_ids, cur_ids], dim=1)
|
|
end = check_uncompleted_token(cur_ids[0])
|
|
left_ids = cur_ids[:, end:]
|
|
cur_ids = cur_ids[:, :end]
|
|
text = self._decode_text(cur_ids, tokenizer)[0] if end > 0 else ""
|
|
|
|
self.llm_past_key_values = outputs.past_key_values
|
|
input_ids = outputs.sequences[:, -1:]
|
|
cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
|
|
attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)
|
|
|
|
res = {"text": text}
|
|
if first_chunk:
|
|
res["hidden_states"] = outputs.hidden_states
|
|
first_chunk = False
|
|
yield res
|
|
|
|
if eos:
|
|
self.llm_generate_completed = True
|
|
break
|
|
if new_len >= max_new_tokens:
|
|
logger.debug(f"LLM generation {new_len} exceeds max_new_tokens({max_new_tokens}), break.")
|
|
break
|
|
|
|
def prepare_tts_text(self, text):
|
|
tts_tokens = self.tts_processor.text_tokenizer.encode(text, add_special_tokens=False)
|
|
tts_tokens_len = len(tts_tokens)
|
|
if tts_tokens_len < self.tts.streaming_text_reserved_len:
|
|
num_pad_tokens = self.tts.streaming_text_reserved_len - tts_tokens_len
|
|
|
|
pad_str = "[Etts]" + "[PAD]" * (num_pad_tokens - 1)
|
|
else:
|
|
tts_tokens = tts_tokens[0 : self.tts.streaming_text_reserved_len]
|
|
tts_tokens_len = len(tts_tokens)
|
|
text = self.tts_processor.text_tokenizer.decode(tts_tokens, add_special_tokens=False)
|
|
pad_str = ""
|
|
spk_emb_placeholder_tts = "[spk_emb]" * self.tts.num_spk_embs
|
|
|
|
new_text_tts = f"[Stts]{spk_emb_placeholder_tts}{text}{pad_str}[Ptts]"
|
|
return new_text_tts, tts_tokens_len
|
|
|
|
def get_tts_text_start_token_ids(self):
|
|
text = "[Stts]" + "[spk_emb]" * self.tts.num_spk_embs
|
|
tts_input_ids = self.tts_processor.text_tokenizer(text, return_tensors="pt", add_special_tokens=False)[
|
|
"input_ids"
|
|
].cuda()
|
|
return tts_input_ids
|
|
|
|
def _build_streaming_mask(self, tts_tokens_len):
|
|
tts_sequence_full_length = (
|
|
1 + self.tts.num_spk_embs * self.tts.use_speaker_embedding + self.tts.streaming_text_reserved_len + 1
|
|
)
|
|
streaming_attention_mask = torch.zeros(tts_sequence_full_length, dtype=torch.int8)
|
|
streaming_attention_mask[0 : 1 + 1 + tts_tokens_len + 1] = 1
|
|
streaming_attention_mask[-1] = 1
|
|
return streaming_attention_mask
|
|
|
|
def _get_last_spk_embeds(self, inputs, outputs):
|
|
last_hidden_states = [hs[-1] for hs in outputs.hidden_states]
|
|
|
|
|
|
last_hidden_states = torch.vstack([i[0] for i in last_hidden_states])
|
|
|
|
|
|
spk_bound = inputs["spk_bounds"][0][-1]
|
|
|
|
spk_embeds = last_hidden_states[spk_bound[0] : spk_bound[1]]
|
|
return spk_embeds
|
|
|
|
def _generate_mel_spec(self, inputs, outputs, text, output_chunk_size=25, tts_max_new_tokens=2048):
|
|
spk_embeds = self._get_last_spk_embeds(inputs, outputs)
|
|
|
|
text = text.split("<|tts_bos|>")[-1]
|
|
gen_text = text.split("<|tts_eos|>")[0]
|
|
tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
|
|
tts_inputs = self.tts_processor.text_tokenizer.encode(tts_text, add_special_tokens=False)
|
|
tts_input_ids = torch.Tensor(tts_inputs).unsqueeze(0).to("cuda", dtype=torch.long)
|
|
streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
|
|
|
|
logits_warpers, logits_processors = gen_logits(
|
|
num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty
|
|
)
|
|
|
|
condition_length = (
|
|
1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1
|
|
)
|
|
|
|
dtype = self.tts.emb_text.weight.dtype
|
|
emb = torch.zeros(1, condition_length, self.tts.num_vq, dtype=dtype, device=self.tts.device)
|
|
past_key_values = [
|
|
(
|
|
torch.zeros(
|
|
1,
|
|
self.tts.config.num_attention_heads,
|
|
condition_length - 1,
|
|
self.tts.config.hidden_size // self.tts.config.num_attention_heads,
|
|
dtype=emb.dtype,
|
|
device=self.tts.device,
|
|
),
|
|
torch.zeros(
|
|
1,
|
|
self.tts.config.num_attention_heads,
|
|
condition_length - 1,
|
|
self.tts.config.hidden_size // self.tts.config.num_attention_heads,
|
|
dtype=emb.dtype,
|
|
device=self.tts.device,
|
|
),
|
|
)
|
|
for _ in range(self.tts.config.num_hidden_layers)
|
|
]
|
|
|
|
audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device)
|
|
|
|
eos_lab = False
|
|
for chunk_idx in range(math.ceil(emb.shape[1] / self.tts.streaming_text_chunk_size)):
|
|
if chunk_idx == 0:
|
|
begin = chunk_idx * self.tts.streaming_text_chunk_size + 0
|
|
end = (
|
|
(chunk_idx + 1) * self.tts.streaming_text_chunk_size
|
|
+ 1
|
|
+ self.tts.use_speaker_embedding * self.tts.num_spk_embs
|
|
)
|
|
else:
|
|
begin = (
|
|
chunk_idx * self.tts.streaming_text_chunk_size
|
|
+ 1
|
|
+ self.tts.use_speaker_embedding * self.tts.num_spk_embs
|
|
)
|
|
end = min(
|
|
(chunk_idx + 1) * self.tts.streaming_text_chunk_size
|
|
+ 1
|
|
+ self.tts.use_speaker_embedding * self.tts.num_spk_embs,
|
|
condition_length - 1,
|
|
)
|
|
|
|
if end - begin > 0:
|
|
text_input_ids = tts_input_ids[:, begin:end]
|
|
position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)
|
|
|
|
if begin == 0:
|
|
past_key_values = self.tts.prefill_text(
|
|
input_ids=text_input_ids,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
lm_spk_emb_last_hidden_states=spk_embeds,
|
|
)
|
|
else:
|
|
past_key_values = self.tts.prefill_text(
|
|
input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values
|
|
)
|
|
|
|
outputs = self.tts.generate(
|
|
input_ids=audio_input_ids,
|
|
past_key_values=past_key_values,
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
max_new_token=output_chunk_size,
|
|
force_no_stop=self.force_no_stop,
|
|
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
|
|
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
|
|
logits_warpers=logits_warpers,
|
|
logits_processors=logits_processors,
|
|
)
|
|
audio_input_ids = outputs.audio_input_ids
|
|
past_key_values = outputs.past_key_values
|
|
|
|
if outputs.finished:
|
|
logger.debug("Generation finished.")
|
|
eos_lab = True
|
|
break
|
|
|
|
if not eos_lab:
|
|
logger.debug("eos_lab False, Generation continue.")
|
|
while True:
|
|
outputs = self.tts.generate(
|
|
input_ids=audio_input_ids,
|
|
past_key_values=past_key_values,
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
max_new_token=output_chunk_size,
|
|
force_no_stop=self.force_no_stop,
|
|
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
|
|
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
|
|
logits_warpers=logits_warpers,
|
|
logits_processors=logits_processors,
|
|
)
|
|
|
|
audio_input_ids = outputs.audio_input_ids
|
|
past_key_values = outputs.past_key_values
|
|
|
|
if outputs.finished:
|
|
logger.debug("Generation finished.")
|
|
break
|
|
if outputs.new_ids.shape[1] > tts_max_new_tokens:
|
|
logger.debug(f"Generation length > {tts_max_new_tokens}, stopped.")
|
|
break
|
|
|
|
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids)
|
|
return mel_spec
|
|
|
|
def _linear_overlap_add2_wav(self, frames: List[torch.Tensor], overlap: int):
|
|
"""
|
|
Merge two audio waveforms with smooth in streaming audio generation.
|
|
Borrowed some codes from `https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py`
|
|
"""
|
|
assert len(frames) == 2
|
|
device = frames[0].device
|
|
dtype = frames[0].dtype
|
|
|
|
|
|
frame0_length = frames[0].shape[-1]
|
|
frame1_length = frames[1].shape[-1]
|
|
total_size = frame0_length + frame1_length - overlap
|
|
weight_len = max(frame0_length, frame1_length) + overlap
|
|
t = torch.linspace(0, 1, weight_len + 2, device=device, dtype=dtype)[1:-1]
|
|
weight = 0.5 - (t - 0.5).abs()
|
|
|
|
sum_weight = torch.zeros(total_size, device=device, dtype=dtype)
|
|
out = torch.zeros(total_size, device=device, dtype=dtype)
|
|
offset: int = 0
|
|
|
|
out[offset : offset + frame0_length] += weight[-frame0_length:] * frames[0]
|
|
sum_weight[offset : offset + frame0_length] += weight[-frame0_length:]
|
|
offset += frame0_length - overlap
|
|
out[offset : offset + frame1_length] += weight[:frame1_length] * frames[1]
|
|
sum_weight[offset : offset + frame1_length] += weight[:frame1_length]
|
|
|
|
assert sum_weight.min() > 0
|
|
out = out / sum_weight
|
|
return out[:frame0_length], out[frame0_length:]
|
|
|
|
def _generate_mel_spec_audio_streaming(
|
|
self,
|
|
spk_bounds,
|
|
streamer,
|
|
output_chunk_size=25,
|
|
spk_embeds=None,
|
|
prev_seg_text_ids=None,
|
|
prev_seg_text_left="",
|
|
prev_seg_audio_ids=None,
|
|
enable_regenerate=False,
|
|
):
|
|
|
|
gen_text = ""
|
|
tts_text = ""
|
|
new_segment_gen = False
|
|
if spk_embeds is None:
|
|
spk_bound = spk_bounds[0][-1]
|
|
r = next(streamer)
|
|
txt = r["text"]
|
|
gen_text += txt.split("<|tts_eos|>")[0]
|
|
tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
|
|
last_hidden_states = r["hidden_states"][0][-1][0]
|
|
spk_embeds = last_hidden_states[spk_bound[0] : spk_bound[1]]
|
|
|
|
|
|
logits_warpers, logits_processors = gen_logits(
|
|
num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty
|
|
)
|
|
condition_length = (
|
|
1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1
|
|
)
|
|
tts_start_token_len = 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs
|
|
dtype = self.tts.emb_text.weight.dtype
|
|
past_key_values = [
|
|
(
|
|
torch.zeros(
|
|
1,
|
|
self.tts.config.num_attention_heads,
|
|
condition_length - 1,
|
|
self.tts.config.hidden_size // self.tts.config.num_attention_heads,
|
|
dtype=dtype,
|
|
device=self.tts.device,
|
|
),
|
|
torch.zeros(
|
|
1,
|
|
self.tts.config.num_attention_heads,
|
|
condition_length - 1,
|
|
self.tts.config.hidden_size // self.tts.config.num_attention_heads,
|
|
dtype=dtype,
|
|
device=self.tts.device,
|
|
),
|
|
)
|
|
for _ in range(self.tts.config.num_hidden_layers)
|
|
]
|
|
audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device)
|
|
|
|
|
|
chunk_idx = 0
|
|
new_ids_len = 0
|
|
prev_text_len = 0
|
|
if prev_seg_text_ids is not None and prev_seg_audio_ids is not None:
|
|
tts_token_lens = prev_seg_text_ids.shape[1]
|
|
|
|
streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
|
|
position_ids = torch.arange(
|
|
0, tts_token_lens + tts_start_token_len, dtype=torch.long, device=self.tts.device
|
|
).unsqueeze(0)
|
|
|
|
text_input_ids = self.get_tts_text_start_token_ids()
|
|
text_input_ids = torch.cat([text_input_ids, prev_seg_text_ids], dim=1)
|
|
past_key_values = self.tts.prefill_text(
|
|
input_ids=text_input_ids,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
lm_spk_emb_last_hidden_states=spk_embeds,
|
|
)
|
|
past_key_values = self.tts.prefill_audio_ids(
|
|
input_ids=prev_seg_audio_ids[:, :-1, :],
|
|
|
|
past_key_values=past_key_values,
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
)
|
|
|
|
|
|
chunk_idx += int(tts_token_lens / self.tts.streaming_text_chunk_size)
|
|
audio_input_ids = torch.cat([audio_input_ids, prev_seg_audio_ids], dim=1)
|
|
text = self.tts_processor.text_tokenizer.decode(prev_seg_text_ids[0].tolist(), add_special_tokens=False)
|
|
|
|
gen_text += text
|
|
gen_text += prev_seg_text_left
|
|
prev_text_len = len(gen_text)
|
|
new_ids_len += prev_seg_audio_ids.shape[1]
|
|
|
|
prev_wav = None
|
|
eos_lab = False
|
|
stop = False
|
|
shift_len = 180
|
|
voice_checker = VoiceChecker()
|
|
number_converter = NumberToTextConverter()
|
|
lang = None
|
|
gen_text_raw = gen_text
|
|
for t, r in enumerate(streamer):
|
|
t += 1
|
|
txt = r["text"]
|
|
txt = txt.split("<|tts_eos|>")[0]
|
|
gen_text_raw += txt
|
|
if t == 1 and txt == "" and prev_seg_text_ids is not None:
|
|
logger.warning("New segment is empty, generation finished.")
|
|
return
|
|
if t <= 2:
|
|
lang = number_converter.detect_language(gen_text_raw)
|
|
gen_text += number_converter.replace_numbers_with_text(txt, lang).replace("*", "")
|
|
|
|
|
|
tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
|
|
|
|
if tts_token_lens >= self.tts.streaming_text_reserved_len - shift_len:
|
|
end_c = sentence_end(txt)
|
|
if end_c:
|
|
end_c_idx = gen_text.rfind(end_c)
|
|
assert end_c_idx != -1
|
|
text_left = gen_text[end_c_idx + 1 :]
|
|
gen_text = gen_text[: end_c_idx + 1]
|
|
tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
|
|
new_segment_gen = True
|
|
logger.debug(
|
|
f"tts_text tokens {tts_token_lens} exceed {self.tts.streaming_text_reserved_len - shift_len}, starting a new segment generation"
|
|
)
|
|
break
|
|
|
|
if tts_token_lens >= (chunk_idx + 1) * self.tts.streaming_text_chunk_size:
|
|
|
|
|
|
if chunk_idx == 0:
|
|
begin = 0
|
|
end = (chunk_idx + 1) * self.tts.streaming_text_chunk_size + tts_start_token_len
|
|
else:
|
|
begin = chunk_idx * self.tts.streaming_text_chunk_size + tts_start_token_len
|
|
end = min(
|
|
(chunk_idx + 1) * self.tts.streaming_text_chunk_size + tts_start_token_len, condition_length - 1
|
|
)
|
|
|
|
tts_input_ids = self.tts_processor.text_tokenizer(
|
|
tts_text, return_tensors="pt", add_special_tokens=False
|
|
)["input_ids"].cuda()
|
|
text_input_ids = tts_input_ids[:, begin:end]
|
|
streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
|
|
position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)
|
|
|
|
past_key_values = self.tts.prefill_text(
|
|
input_ids=text_input_ids,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
lm_spk_emb_last_hidden_states=spk_embeds if chunk_idx == 0 else None,
|
|
)
|
|
outputs = self.tts.generate(
|
|
input_ids=audio_input_ids,
|
|
past_key_values=past_key_values,
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
max_new_token=output_chunk_size,
|
|
force_no_stop=self.force_no_stop,
|
|
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
|
|
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
|
|
logits_warpers=logits_warpers,
|
|
logits_processors=logits_processors,
|
|
)
|
|
audio_input_ids = (
|
|
outputs.audio_input_ids
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
chunk_idx += 1
|
|
|
|
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, max(new_ids_len - 4, 0) :, :])
|
|
new_ids_len = outputs.new_ids.shape[1]
|
|
|
|
wav_np, sr = self.decode_mel_to_audio(mel_spec)
|
|
|
|
if enable_regenerate:
|
|
if prev_wav is not None:
|
|
check_wav_np = wav_np[2048:].cpu().numpy()
|
|
check_mel = mel_spec[0, :, 8:].cpu().numpy()
|
|
else:
|
|
check_wav_np = wav_np.cpu().numpy()
|
|
check_mel = mel_spec[0].cpu().numpy()
|
|
if enable_regenerate and voice_checker.is_bad(check_wav_np, check_mel, chunk_size=2560):
|
|
voice_checker.reset()
|
|
|
|
N = output_chunk_size if prev_wav is None else output_chunk_size * 2
|
|
past_kv = []
|
|
for i in range(len(past_key_values)):
|
|
past_kv.append(
|
|
(
|
|
past_key_values[i][0][:, :, :-N, :],
|
|
past_key_values[i][1][:, :, :-N, :],
|
|
)
|
|
)
|
|
outputs = self.tts.generate(
|
|
input_ids=audio_input_ids[:, :-N, :],
|
|
past_key_values=past_kv,
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
max_new_token=N,
|
|
force_no_stop=self.force_no_stop,
|
|
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
|
|
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
|
|
logits_warpers=logits_warpers,
|
|
logits_processors=logits_processors,
|
|
)
|
|
audio_input_ids = outputs.audio_input_ids
|
|
past_key_values = outputs.past_key_values
|
|
|
|
new_ids_len -= N
|
|
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, new_ids_len:, :])
|
|
new_ids_len = outputs.new_ids.shape[1]
|
|
wav_np, sr = self.decode_mel_to_audio(mel_spec)
|
|
|
|
if prev_wav is not None:
|
|
wav_y = wav_np[: len(prev_wav)]
|
|
prev_wav = wav_np[len(prev_wav) :]
|
|
cur_text = gen_text_raw[prev_text_len:]
|
|
prev_text_len = len(gen_text_raw)
|
|
yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
|
|
|
|
else:
|
|
prev_wav = wav_np
|
|
else:
|
|
|
|
if prev_wav is not None:
|
|
wav_np, prev_wav = self._linear_overlap_add2_wav(
|
|
[prev_wav, wav_np], overlap=512 * 4
|
|
)
|
|
cur_text = gen_text_raw[prev_text_len:]
|
|
prev_text_len = len(gen_text_raw)
|
|
yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
|
|
|
|
else:
|
|
prev_wav = wav_np
|
|
|
|
if outputs.finished:
|
|
logger.debug("Generation finished.")
|
|
eos_lab = True
|
|
break
|
|
|
|
if not eos_lab and tts_text:
|
|
logger.debug("eos_lab False, Generation continue.")
|
|
|
|
if chunk_idx == 0:
|
|
begin = 0
|
|
else:
|
|
begin = chunk_idx * self.tts.streaming_text_chunk_size + tts_start_token_len
|
|
end = tts_token_lens + tts_start_token_len + 1
|
|
if end > begin:
|
|
tts_input_ids = self.tts_processor.text_tokenizer(
|
|
tts_text, return_tensors="pt", add_special_tokens=False
|
|
)["input_ids"].cuda()
|
|
text_input_ids = tts_input_ids[:, begin:end]
|
|
streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
|
|
position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)
|
|
|
|
past_key_values = self.tts.prefill_text(
|
|
input_ids=text_input_ids,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
lm_spk_emb_last_hidden_states=spk_embeds if chunk_idx == 0 else None,
|
|
)
|
|
|
|
while True:
|
|
|
|
outputs = self.tts.generate(
|
|
input_ids=audio_input_ids,
|
|
past_key_values=past_key_values,
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
max_new_token=output_chunk_size,
|
|
force_no_stop=self.force_no_stop,
|
|
|
|
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
|
|
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
|
|
logits_warpers=logits_warpers,
|
|
logits_processors=logits_processors,
|
|
)
|
|
audio_input_ids = outputs.audio_input_ids
|
|
past_key_values = outputs.past_key_values
|
|
chunk_idx += 1
|
|
|
|
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, max(new_ids_len - 4, 0) :, :])
|
|
new_ids_len = outputs.new_ids.shape[1]
|
|
|
|
wav_np, sr = self.decode_mel_to_audio(mel_spec)
|
|
|
|
if enable_regenerate:
|
|
if prev_wav is not None:
|
|
check_wav_np = wav_np[2048:].cpu().numpy()
|
|
check_mel = mel_spec[0, :, 8:].cpu().numpy()
|
|
else:
|
|
check_wav_np = wav_np.cpu().numpy()
|
|
check_mel = mel_spec[0].cpu().numpy()
|
|
if enable_regenerate and voice_checker.is_bad(check_wav_np, check_mel, chunk_size=2560):
|
|
voice_checker.reset()
|
|
|
|
N = output_chunk_size if prev_wav is None else output_chunk_size * 2
|
|
past_kv = []
|
|
for i in range(len(past_key_values)):
|
|
past_kv.append(
|
|
(
|
|
past_key_values[i][0][:, :, :-N, :],
|
|
past_key_values[i][1][:, :, :-N, :],
|
|
)
|
|
)
|
|
outputs = self.tts.generate(
|
|
input_ids=audio_input_ids[:, :-N, :],
|
|
past_key_values=past_kv,
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
max_new_token=N,
|
|
force_no_stop=self.force_no_stop,
|
|
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
|
|
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
|
|
logits_warpers=logits_warpers,
|
|
logits_processors=logits_processors,
|
|
)
|
|
audio_input_ids = outputs.audio_input_ids
|
|
past_key_values = outputs.past_key_values
|
|
|
|
new_ids_len -= N
|
|
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, new_ids_len:, :])
|
|
new_ids_len = outputs.new_ids.shape[1]
|
|
wav_np, sr = self.decode_mel_to_audio(mel_spec)
|
|
|
|
if prev_wav is not None:
|
|
wav_y = wav_np[: len(prev_wav)]
|
|
prev_wav = wav_np[len(prev_wav) :]
|
|
cur_text = gen_text_raw[prev_text_len:]
|
|
prev_text_len = len(gen_text_raw)
|
|
yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
|
|
else:
|
|
prev_wav = wav_np
|
|
else:
|
|
|
|
if prev_wav is not None:
|
|
wav_np, prev_wav = self._linear_overlap_add2_wav(
|
|
[prev_wav, wav_np], overlap=512 * 4
|
|
)
|
|
cur_text = gen_text_raw[prev_text_len:]
|
|
prev_text_len = len(gen_text_raw)
|
|
yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
|
|
else:
|
|
prev_wav = wav_np
|
|
|
|
if outputs.finished:
|
|
logger.debug("Generation finished.")
|
|
break
|
|
if outputs.new_ids.shape[1] > 2048:
|
|
stop = True
|
|
logger.debug("Generation length > 2048, stopped.")
|
|
break
|
|
|
|
if prev_wav is not None:
|
|
cur_text = gen_text_raw[prev_text_len:]
|
|
yield OmniOutput(text=cur_text, audio_wav=prev_wav, sampling_rate=sr)
|
|
|
|
if new_segment_gen and not stop:
|
|
logger.debug(
|
|
f"tts_text tokens {tts_token_lens} exceed {self.tts.streaming_text_reserved_len - shift_len}, start a new segment generation"
|
|
)
|
|
tid_len = 5
|
|
prev_seg_text_ids = tts_input_ids[:, end - 1 - tid_len : end - 1]
|
|
aid_len = 50
|
|
prev_seg_audio_ids = outputs.new_ids[:, -aid_len:, :]
|
|
|
|
result = self._generate_mel_spec_audio_streaming(
|
|
spk_bounds,
|
|
streamer,
|
|
output_chunk_size,
|
|
spk_embeds,
|
|
prev_seg_text_ids,
|
|
text_left,
|
|
prev_seg_audio_ids,
|
|
enable_regenerate=enable_regenerate,
|
|
)
|
|
for res in result:
|
|
yield res
|
|
|
|
def decode_mel_to_audio(self, mel_spec, output_path=""):
|
|
with torch.inference_mode():
|
|
wav_numpy = self.vocos.decode(mel_spec.float()).cpu().squeeze()
|
|
sr = 24000
|
|
if output_path:
|
|
sf.write(output_path, wav_numpy.numpy(), samplerate=sr)
|
|
logger.info(f"Audio saved to {output_path}")
|
|
return wav_numpy, sr
|
|
|
|
|
|
|
|
class MiniCPMWhisperEncoderLayer(nn.Module):
|
|
def __init__(self, config: WhisperConfig, layer_idx: int = None):
|
|
super().__init__()
|
|
self.embed_dim = config.d_model
|
|
self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.encoder_attention_heads,
|
|
dropout=config.attention_dropout,
|
|
config=config,
|
|
layer_idx=layer_idx,
|
|
)
|
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
self.dropout = config.dropout
|
|
self.activation_fn = ACT2FN[config.activation_function]
|
|
self.activation_dropout = config.activation_dropout
|
|
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
|
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
layer_head_mask: torch.Tensor,
|
|
output_attentions: bool = False,
|
|
past_key_values: Optional[EncoderDecoderCache] = None,
|
|
use_cache: Optional[bool] = False,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`):
|
|
Hidden states to be fed into the encoder layer.
|
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`):
|
|
Attention mask where padding elements are indicated by large negative values.
|
|
layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`):
|
|
Mask to nullify selected heads of the attention modules.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attention weights.
|
|
past_key_values (`EncoderDecoderCache`, *optional*):
|
|
Past key-value pairs used for incremental decoding.
|
|
use_cache (`bool`, *optional*):
|
|
Whether or not to return updated `past_key_values` for caching.
|
|
|
|
Returns:
|
|
A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`.
|
|
"""
|
|
residual = hidden_states
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
hidden_states, attn_weights, past_key_values = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
layer_head_mask=layer_head_mask,
|
|
output_attentions=output_attentions,
|
|
past_key_value=past_key_values,
|
|
)
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
|
hidden_states = self.fc2(hidden_states)
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
if hidden_states.dtype == torch.float16 and (
|
|
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
|
):
|
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (past_key_values,)
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
class MiniCPMWhisperEncoder(WhisperEncoder):
|
|
|
|
def __init__(self, config: WhisperConfig):
|
|
super().__init__(config)
|
|
self.layers = nn.ModuleList(
|
|
[MiniCPMWhisperEncoderLayer(config, layer_idx=i) for i in range(config.encoder_layers)]
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_features,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
past_key_values: Optional[EncoderDecoderCache] = None,
|
|
use_cache: Optional[bool] = None,
|
|
):
|
|
r"""
|
|
Forward pass of the Whisper encoder.
|
|
|
|
Args:
|
|
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
|
Float values of log-mel features extracted from the raw audio waveform. Typically generated
|
|
by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav`
|
|
files into padded 2D mel spectrogram frames. These features are projected via convolution layers
|
|
(`conv1` and `conv2`) and then transformed into embeddings for the encoder.
|
|
|
|
attention_mask (`torch.Tensor`, *optional*):
|
|
Not used by Whisper for masking `input_features`, but included for API compatibility with
|
|
other models. If provided, it is simply ignored within the model. By default, Whisper
|
|
effectively ignores silence in the input log-mel spectrogram.
|
|
|
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
|
Mask to nullify selected attention heads. The elements should be either 1 or 0, where:
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked** (i.e., the attention head is dropped).
|
|
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attention tensors of all encoder layers. If set to `True`, the
|
|
returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with
|
|
attention weights for each encoder layer.
|
|
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. If set to `True`, the returned
|
|
tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the
|
|
initial embedding output as well as the outputs of each layer.
|
|
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead
|
|
of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object,
|
|
otherwise it will be a tuple.
|
|
|
|
past_key_values (`EncoderDecoderCache`, *optional*):
|
|
When using caching for faster inference, this is an object that stores the key-value pairs
|
|
for attention states. If provided, the model will append new states to the existing cache
|
|
and return the updated cache. This speeds up sequential decoding or chunked inference.
|
|
|
|
- If `past_key_values` is `None`, no past states are used or returned.
|
|
- If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided
|
|
cache and return the updated cache (as `next_encoder_cache`).
|
|
|
|
use_cache (`bool`, *optional*):
|
|
Whether or not the model should use caching (`past_key_values`) to speed up processing
|
|
during inference. When set to `True`, the model will:
|
|
- Inspect and use `past_key_values` if provided.
|
|
- Return updated `past_key_values` (under the name `next_encoder_cache` in
|
|
`BaseModelOutputWithPast`).
|
|
|
|
Returns:
|
|
`BaseModelOutputWithPast` or `tuple` (depending on `return_dict`):
|
|
If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains:
|
|
- **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
The output of the final encoder layer.
|
|
- **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`):
|
|
Hidden states of the model at each layer (including the initial projection).
|
|
- **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`):
|
|
Attention weights from each encoder layer.
|
|
- **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*):
|
|
Updated cache of key-value pairs if `use_cache=True`.
|
|
|
|
If `return_dict=False`, a tuple is returned, where the format is:
|
|
`(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions`
|
|
only present if their respective `output_*` arguments are set to `True`.
|
|
|
|
Example:
|
|
>>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration
|
|
>>> import torch
|
|
|
|
>>> # Load a feature extractor and a Whisper model
|
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en")
|
|
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
|
|
|
>>> # Assume you have audio (list of floats or numpy array) loaded from a file
|
|
>>> # Then extract the mel features:
|
|
>>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
|
|
|
>>> # Forward pass
|
|
>>> outputs = model.encoder(
|
|
... input_features=input_features,
|
|
... output_hidden_states=True,
|
|
... output_attentions=True,
|
|
... use_cache=True
|
|
... )
|
|
|
|
>>> # Retrieve the last hidden state
|
|
>>> last_hidden_state = outputs.last_hidden_state
|
|
>>> print(last_hidden_state.shape)
|
|
torch.Size([batch_size, seq_length, hidden_size])
|
|
|
|
>>> # Retrieve the intermediate hidden states if output_hidden_states=True
|
|
>>> all_encoder_hidden_states = outputs.hidden_states
|
|
|
|
>>> # Retrieve attention weights if output_attentions=True
|
|
>>> all_encoder_attentions = outputs.attentions
|
|
|
|
>>> # Retrieve updated past key values if use_cache=True
|
|
>>> encoder_cache = outputs.past_key_values
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)
|
|
|
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
|
|
|
embed_pos = self.embed_positions.weight
|
|
past_key_values_length = 0
|
|
if use_cache:
|
|
if past_key_values is None:
|
|
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
|
|
elif isinstance(past_key_values, list):
|
|
past_key_values = EncoderDecoderCache(DynamicCache.from_legacy_cache(past_key_values), DynamicCache())
|
|
elif isinstance(past_key_values, DynamicCache):
|
|
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
|
|
else:
|
|
pass
|
|
past_key_values_length = past_key_values.self_attention_cache.get_usable_length(inputs_embeds.shape[1])
|
|
if inputs_embeds.shape[1] + past_key_values_length > embed_pos.shape[0]:
|
|
logger.warning("seems the audio is longer than 30s. repeating the last part of the audio")
|
|
embed_pos_front = embed_pos[past_key_values_length:, :]
|
|
embed_pos = torch.cat(
|
|
(
|
|
embed_pos_front,
|
|
torch.repeat_interleave(
|
|
embed_pos[-1, :].unsqueeze(0),
|
|
inputs_embeds.shape[1] - embed_pos.shape[0] + past_key_values_length,
|
|
dim=0,
|
|
),
|
|
)
|
|
)
|
|
else:
|
|
embed_pos = embed_pos[past_key_values_length : inputs_embeds.shape[1] + past_key_values_length, :]
|
|
else:
|
|
embed_pos = embed_pos[: inputs_embeds.shape[1], :]
|
|
|
|
hidden_states = inputs_embeds + embed_pos
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
|
|
if head_mask is not None:
|
|
assert head_mask.size()[0] == (
|
|
len(self.layers)
|
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
|
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
to_drop = False
|
|
if self.training:
|
|
dropout_probability = torch.rand([])
|
|
if dropout_probability < self.layerdrop:
|
|
to_drop = True
|
|
|
|
|
|
if to_drop:
|
|
layer_outputs = (None, None)
|
|
else:
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
encoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
(head_mask[idx] if head_mask is not None else None),
|
|
output_attentions,
|
|
past_key_values,
|
|
use_cache,
|
|
)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
|
output_attentions=output_attentions,
|
|
past_key_values=past_key_values,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_encoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
else:
|
|
next_encoder_cache = None
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=encoder_states,
|
|
attentions=all_attentions,
|
|
past_key_values=next_encoder_cache,
|
|
)
|
|
|
|
|
|
|
|
class ConvNeXtBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
kernel: int,
|
|
dilation: int,
|
|
layer_scale_init_value: float = 1e-6,
|
|
):
|
|
|
|
super().__init__()
|
|
self.dwconv = nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size=kernel,
|
|
padding=dilation * (kernel // 2),
|
|
dilation=dilation,
|
|
groups=dim,
|
|
)
|
|
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(dim, intermediate_dim)
|
|
self.act = nn.GELU()
|
|
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
|
self.coef = (
|
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
|
if layer_scale_init_value > 0
|
|
else None
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor, cond=None) -> torch.Tensor:
|
|
residual = x
|
|
|
|
y = self.dwconv(x)
|
|
y.transpose_(1, 2)
|
|
x = self.norm(y)
|
|
del y
|
|
y = self.pwconv1(x)
|
|
del x
|
|
x = self.act(y)
|
|
del y
|
|
y = self.pwconv2(x)
|
|
del x
|
|
if self.coef is not None:
|
|
y *= self.coef
|
|
y.transpose_(1, 2)
|
|
|
|
x = y + residual
|
|
del y
|
|
|
|
return x
|
|
|
|
|
|
|
|
class GFSQ(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
levels: List[int],
|
|
G: int,
|
|
R: int,
|
|
eps=1e-5,
|
|
transpose=True,
|
|
):
|
|
super(GFSQ, self).__init__()
|
|
self.quantizer = GroupedResidualFSQ(
|
|
dim=dim,
|
|
levels=list(levels),
|
|
num_quantizers=R,
|
|
groups=G,
|
|
)
|
|
self.n_ind = math.prod(levels)
|
|
self.eps = eps
|
|
self.transpose = transpose
|
|
self.G = G
|
|
self.R = R
|
|
|
|
def _embed(self, x: torch.Tensor):
|
|
if self.transpose:
|
|
x = x.transpose(1, 2)
|
|
x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3)
|
|
feat = self.quantizer.get_output_from_indices(x)
|
|
return feat.transpose_(1, 2) if self.transpose else feat
|
|
|
|
def __call__(self, x: torch.Tensor) -> torch.Tensor:
|
|
return super().__call__(x)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
if self.transpose:
|
|
x.transpose_(1, 2)
|
|
_, ind = self.quantizer(x)
|
|
ind = ind.permute(1, 2, 0, 3).contiguous()
|
|
ind = ind.view(ind.size(0), ind.size(1), -1)
|
|
return ind.transpose_(1, 2) if self.transpose else ind
|
|
|
|
|
|
|
|
class DVAEDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
idim: int,
|
|
odim: int,
|
|
n_layer=12,
|
|
bn_dim=64,
|
|
hidden=256,
|
|
kernel=7,
|
|
dilation=2,
|
|
up=False,
|
|
):
|
|
super().__init__()
|
|
self.up = up
|
|
self.conv_in = nn.Sequential(
|
|
nn.Conv1d(idim, bn_dim, 3, 1, 1),
|
|
nn.GELU(),
|
|
nn.Conv1d(bn_dim, hidden, 3, 1, 1),
|
|
)
|
|
self.decoder_block = nn.ModuleList(
|
|
[
|
|
ConvNeXtBlock(
|
|
hidden,
|
|
hidden * 4,
|
|
kernel,
|
|
dilation,
|
|
)
|
|
for _ in range(n_layer)
|
|
]
|
|
)
|
|
self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False)
|
|
|
|
def forward(self, x: torch.Tensor, conditioning=None) -> torch.Tensor:
|
|
|
|
y = self.conv_in(x)
|
|
del x
|
|
for f in self.decoder_block:
|
|
y = f(y, conditioning)
|
|
|
|
x = self.conv_out(y)
|
|
del y
|
|
return x
|
|
|
|
|
|
|
|
class DVAE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
):
|
|
super().__init__()
|
|
|
|
coef = torch.rand(100)
|
|
self.coef = nn.Parameter(coef.unsqueeze(0).unsqueeze_(2))
|
|
|
|
self.downsample_conv = nn.Sequential(
|
|
nn.Conv1d(100, 512, 3, 1, 1),
|
|
nn.GELU(),
|
|
nn.Conv1d(512, 512, 4, 2, 1),
|
|
nn.GELU(),
|
|
)
|
|
|
|
self.encoder = DVAEDecoder(
|
|
idim=512,
|
|
odim=1024,
|
|
hidden=256,
|
|
n_layer=12,
|
|
bn_dim=128,
|
|
)
|
|
|
|
self.decoder = DVAEDecoder(
|
|
idim=512,
|
|
odim=512,
|
|
hidden=256,
|
|
n_layer=12,
|
|
bn_dim=128,
|
|
)
|
|
|
|
self.out_conv = nn.Conv1d(512, 100, 3, 1, 1, bias=False)
|
|
|
|
self.vq_layer = GFSQ(
|
|
dim=1024,
|
|
levels=(5, 5, 5, 5),
|
|
G=2,
|
|
R=2,
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def forward(self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode") -> torch.Tensor:
|
|
if mode == "encode" and hasattr(self, "encoder") and self.vq_layer is not None:
|
|
mel = inp.clone()
|
|
x: torch.Tensor = self.downsample_conv(
|
|
torch.div(mel, self.coef.view(100, 1).expand(mel.shape), out=mel),
|
|
).unsqueeze_(0)
|
|
del mel
|
|
x = self.encoder(x)
|
|
ind = self.vq_layer(x)
|
|
del x
|
|
return ind
|
|
|
|
if self.vq_layer is not None:
|
|
vq_feats = self.vq_layer._embed(inp)
|
|
else:
|
|
vq_feats = inp
|
|
|
|
vq_feats = (
|
|
vq_feats.view(
|
|
(vq_feats.size(0), 2, vq_feats.size(1) // 2, vq_feats.size(2)),
|
|
)
|
|
.permute(0, 2, 3, 1)
|
|
.flatten(2)
|
|
)
|
|
|
|
dec_out = self.out_conv(
|
|
self.decoder(
|
|
x=vq_feats,
|
|
),
|
|
)
|
|
|
|
del vq_feats
|
|
|
|
return torch.mul(dec_out, self.coef, out=dec_out)
|
|
|
|
|
|
def apply_spk_emb(
|
|
input_ids: torch.Tensor = None,
|
|
spk_emb: torch.Tensor = None,
|
|
input_embeds: torch.Tensor = None,
|
|
spk_emb_token_id: int = 0,
|
|
num_spk_embs: int = 1,
|
|
):
|
|
"""
|
|
Replace consecutive `num_spk_embs` speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned.
|
|
|
|
Args:
|
|
input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max]
|
|
spk_emb (torch.Tensor): Speaker embedding tensor, shape [batch_size, num_spk_emb, hidden_dim]
|
|
input_embeds (torch.Tensor): Input embedding tensor, shape [batch_size, seq_len_max, hidden_dim]
|
|
spk_emb_token_id (int): ID of the speaker embedding token
|
|
num_spk_embs (int): Number of speaker embeddings
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
batch_size = input_ids.shape[0]
|
|
|
|
for idx in range(batch_size):
|
|
input_ids_ = input_ids[idx]
|
|
spk_emb_ = spk_emb[idx]
|
|
mask_ = input_ids_ == spk_emb_token_id
|
|
nonzero_position_idx = mask_.nonzero(as_tuple=False)
|
|
assert nonzero_position_idx.shape[0] == num_spk_embs
|
|
begin_idx = nonzero_position_idx.min()
|
|
end_idx = nonzero_position_idx.max()
|
|
input_embeds[idx, begin_idx : end_idx + 1, :] = spk_emb_
|
|
|
|
return
|
|
|
|
|
|
def make_streaming_chunk_mask_generation(
|
|
inputs_embeds: torch.Tensor,
|
|
past_seen_tokens: int,
|
|
streaming_tts_text_mask: torch.Tensor,
|
|
streaming_reserved_length: int = 300,
|
|
streaming_audio_chunk_size: int = 50,
|
|
streaming_text_chunk_size: int = 10,
|
|
num_spk_emb: int = 1,
|
|
use_spk_emb: bool = True,
|
|
) -> torch.Tensor:
|
|
"""
|
|
In streaming audio generation, determine which `text` positions the TTS model can attend to when generating each chunk of `audio` tokens.
|
|
|
|
This function creates a mask that allows the model to attend to a specific chunk of text
|
|
tokens when generating each chunk of audio tokens, enabling streaming TTS generation.
|
|
|
|
Args:
|
|
inputs_embeds (torch.Tensor): Input embeddings tensor.
|
|
past_seen_tokens (int): Number of tokens already seen by the model.
|
|
streaming_tts_text_mask (torch.Tensor): Mask for the text tokens.
|
|
streaming_reserved_length (int, optional): Number of reserved tokens for streaming. Defaults to 300.
|
|
streaming_chunk_length (int, optional): Length of each streaming chunk. Defaults to 50.
|
|
streaming_text_chunk_size (int, optional): Size of each text chunk. Defaults to 7.
|
|
|
|
Returns:
|
|
torch.Tensor: Causal mask for streaming TTS generation, shape is [batch_size=1, 1, seq_len=1, past_seen_tokens+1]
|
|
|
|
Raises:
|
|
AssertionError: If the batch size is not 1 (only supports batch size of 1 for inference).
|
|
"""
|
|
assert inputs_embeds.shape[0] == 1
|
|
|
|
dtype = inputs_embeds.dtype
|
|
device = inputs_embeds.device
|
|
min_dtype = torch.finfo(dtype).min
|
|
|
|
|
|
causal_mask = torch.full((1, past_seen_tokens + inputs_embeds.shape[1]), fill_value=0, dtype=dtype, device=device)
|
|
|
|
|
|
invisible_text_tokens_start = (
|
|
min(
|
|
math.ceil((past_seen_tokens - streaming_reserved_length) / streaming_audio_chunk_size)
|
|
* streaming_text_chunk_size,
|
|
streaming_reserved_length,
|
|
)
|
|
+ 1
|
|
+ num_spk_emb * use_spk_emb
|
|
)
|
|
|
|
invisible_text_tokens_end = (
|
|
streaming_reserved_length + 1 + num_spk_emb * use_spk_emb + 1
|
|
)
|
|
|
|
|
|
causal_mask[0, invisible_text_tokens_start:invisible_text_tokens_end] = min_dtype
|
|
|
|
|
|
causal_mask[0, 0 : 1 + num_spk_emb * use_spk_emb + streaming_reserved_length + 1].masked_fill_(
|
|
streaming_tts_text_mask == 0, min_dtype
|
|
)
|
|
|
|
|
|
causal_mask = causal_mask.unsqueeze(0).unsqueeze(0)
|
|
|
|
return causal_mask
|
|
|
|
|
|
|
|
class CustomRepetitionPenaltyLogitsProcessorRepeat:
|
|
def __init__(self, penalty: float, max_input_ids: int, past_window: int):
|
|
if not isinstance(penalty, float) or not (penalty > 0):
|
|
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
|
|
|
|
self.penalty = penalty
|
|
self.max_input_ids = max_input_ids
|
|
self.past_window = past_window
|
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
|
if input_ids.size(1) > self.past_window:
|
|
input_ids = input_ids.narrow(1, -self.past_window, self.past_window)
|
|
freq = F.one_hot(input_ids, scores.size(1)).sum(1)
|
|
if freq.size(0) > self.max_input_ids:
|
|
freq.narrow(0, self.max_input_ids, freq.size(0) - self.max_input_ids).zero_()
|
|
alpha = torch.pow(self.penalty, freq)
|
|
scores = scores.contiguous()
|
|
inp = scores.multiply(alpha)
|
|
oth = scores.divide(alpha)
|
|
con = scores < 0
|
|
out = torch.where(con, inp, oth)
|
|
del inp, oth, scores, con, alpha
|
|
return out
|
|
|
|
|
|
@dataclass
|
|
class ConditionalChatTTSGenerationOutput(ModelOutput):
|
|
"""
|
|
Output class for ConditionalChatTTS generation.
|
|
|
|
Args:
|
|
new_ids (torch.LongTensor): Newly generated audio code sequence, shape (batch_size, sequence_length, num_vq).
|
|
audio_input_ids (torch.LongTensor): Updated input IDs including condition and generated audio codes, shape (batch_size, full_sequence_length, num_vq).
|
|
past_key_values (Tuple[Tuple[torch.FloatTensor]]): Tuple containing pre-computed keys and values used for attention mechanism. Each element has shape (batch_size, num_heads, sequence_length, embed_size_per_head).
|
|
finished (bool): Boolean indicating whether generation is complete.
|
|
|
|
"""
|
|
|
|
new_ids: torch.LongTensor = None
|
|
audio_input_ids: torch.LongTensor = None
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
|
finished: bool = None
|
|
|
|
|
|
class MultiModalProjector(nn.Module):
|
|
def __init__(self, in_dim, out_dim):
|
|
super().__init__()
|
|
self.linear1 = nn.Linear(in_features=in_dim, out_features=out_dim, bias=True)
|
|
self.relu = nn.ReLU()
|
|
self.linear2 = nn.Linear(in_features=out_dim, out_features=out_dim, bias=True)
|
|
|
|
def forward(self, audio_features):
|
|
hidden_states = self.relu(self.linear1(audio_features))
|
|
hidden_states = self.linear2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class ConditionalChatTTS(PreTrainedModel):
|
|
"""A conditional text-to-speech model that can generate speech from text with speaker conditioning.
|
|
|
|
This model extends PreTrainedModel to provide text-to-speech capabilities with:
|
|
- LLM hidden state conditioning
|
|
- Streaming generation
|
|
|
|
The model uses a transformer architecture with LLM hidden states and can operate in both
|
|
streaming and non-streaming modes for flexible deployment.
|
|
|
|
The model process sequence in the following format:
|
|
| text bos token | LLM embedding projected to tts embedding space | text tokens (fixed length, reserved for future tokens) | audio bos token | audio tokens (audio token length is not fixed)| audio eos token |
|
|
|
|
The format is designed to support LLM-conditioned streaming audio generation.
|
|
|
|
Usage:
|
|
To support streaming generation, two global variables should be maintained outside of the model.
|
|
1. `audio_input_ids`: stores *discrete* audio codes. It is a tensor with shape [1, sequence length+1, num_vq].
|
|
2. `past_key_values`: stores the KV cache for both text tokens and audio codes. It is a list of tuples, each tuple contains two tensors with shape [1, num_attention_heads, sequence length, hidden_size // num_attention_heads]
|
|
|
|
where `num_vq` is the number of audio codebooks, in default setting, it is `4`.
|
|
|
|
1. Create an empty `past_key_values` with
|
|
```python
|
|
initial_kv_cache_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len # where `1` denotes the `bos` token
|
|
dtype = model.emb_text.weight.dtype
|
|
device = model.emb_text.weight.device
|
|
past_key_values = [
|
|
(
|
|
torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device),
|
|
torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device)
|
|
)
|
|
for _ in range(model.config.num_hidden_layers)
|
|
]
|
|
|
|
2. At the same time, create an empty `audio_input_ids` with shape [1, sequence length, num_vq], `num_vq` denotes multiple layer audio codebooks. But here we also include text tokens in the sequence, but they will be zeros, and will not be used, just a placeholder.
|
|
|
|
```python
|
|
initial_audio_input_ids_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len + 1
|
|
# [bos token, speaker embeddings, text tokens, audio bos token]
|
|
audio_input_ids = torch.zeros(batch_size=1, initial_audio_input_ids_length, model.num_vq)
|
|
```
|
|
|
|
2. Prefill some text tokens to TTS model (for example, 10 tokens) using `prefill_text` method.
|
|
|
|
```python
|
|
outputs = llm.generate(**kwargs)
|
|
llm_tokens = some_function_to_extract_llm_tokens(outputs)
|
|
lm_spk_emb_last_hidden_states = some_function_to_extract_lm_spk_emb_last_hidden_states(outputs)
|
|
tts_text_input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens))
|
|
# here assume we are prefilling text token 0 to text token 9 (included), totally 10 tokens.
|
|
begin = 0
|
|
end = 9+1
|
|
position_ids = torch.arange(begin, end, dtype=torch.long, device=device)
|
|
|
|
past_key_values = model.prefill_text(
|
|
input_ids=tts_text_input_ids,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
|
|
)
|
|
```
|
|
|
|
3. Make a `streaming_tts_text_mask` to denote which position contains valid text tokens, similar to `attention_mask` in standard causal attention.
|
|
|
|
```python
|
|
streaming_tts_text_mask = torch.zeros(model.streaming_reserved_length)
|
|
streaming_tts_text_mask[0:end] = 1 # denotes these post
|
|
```
|
|
|
|
3. Generate audio codes using `generate` method.
|
|
|
|
```python
|
|
outputs = model.generate(
|
|
input_ids=audio_input_ids,
|
|
past_key_values=past_key_values,
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
max_new_token=50,
|
|
)
|
|
|
|
# update past_key_values and input_ids
|
|
past_key_values = outputs.past_key_values
|
|
audio_input_ids = outputs.input_ids
|
|
```
|
|
|
|
The `past_key_values` is extended by `max_new_token=50`, and `audio_input_ids` is also extended by `max_new_token=50` after `generate` calling.
|
|
|
|
4. Notice that after prefilling `10` text tokens, the model can generate up to `50` audio tokens, if you want to generate more audio tokens, you need to prefill next `10` text tokens. And it is okay to only generate `25` audio tokens for faster initial response.
|
|
|
|
5. Repeat steps `2,3,4` as needed in your streaming audio generation cases, but ensure usage complies with the following guidelines discussed above.
|
|
"""
|
|
|
|
config_class = ConditionalChatTTSConfig
|
|
_no_split_modules = []
|
|
|
|
def __init__(self, config: ConditionalChatTTSConfig):
|
|
super().__init__(config)
|
|
|
|
self.use_speaker_embedding = config.use_speaker_embedding
|
|
self.use_llm_hidden_state = config.use_llm_hidden_state
|
|
self.num_spk_embs = config.num_spk_embs
|
|
self.spk_emb_token_id = config.spk_emb_token_id
|
|
|
|
self.use_text = config.use_text
|
|
self.streaming = config.streaming
|
|
self.streaming_text_chunk_size = config.streaming_text_chunk_size
|
|
self.streaming_audio_chunk_size = config.streaming_audio_chunk_size
|
|
self.streaming_text_reserved_len = config.streaming_text_reserved_len
|
|
self.audio_bos_token_id = config.audio_bos_token_id
|
|
self.num_mel_bins = config.num_mel_bins
|
|
self.num_vq = config.num_vq
|
|
self.num_audio_tokens = config.num_audio_tokens
|
|
|
|
self.top_p = config.top_p
|
|
self.top_k = config.top_k
|
|
self.repetition_penalty = config.repetition_penalty
|
|
|
|
if self.config.use_mlp:
|
|
self.projector = MultiModalProjector(config.llm_dim, config.hidden_size)
|
|
else:
|
|
self.projector = nn.Linear(config.llm_dim, config.hidden_size, bias=False)
|
|
self.emb_code = nn.ModuleList(
|
|
[nn.Embedding(config.num_audio_tokens, config.hidden_size) for _ in range(config.num_vq)]
|
|
)
|
|
self.emb_text = nn.Embedding(config.num_text_tokens, config.hidden_size)
|
|
self.head_code = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
nn.Linear(config.hidden_size, config.num_audio_tokens, bias=False),
|
|
name="weight",
|
|
)
|
|
for _ in range(config.num_vq)
|
|
]
|
|
)
|
|
dvae = DVAE()
|
|
self.dvae = dvae
|
|
|
|
model_config = LlamaConfig(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
num_hidden_layers=config.num_hidden_layers,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
attn_implementation=config.attn_implementation,
|
|
)
|
|
|
|
model = LlamaModel(model_config)
|
|
self.model = model
|
|
|
|
@torch.inference_mode()
|
|
def merge_inputs_embeds(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
|
|
):
|
|
"""Merge `input_ids` and `lm_spk_emb_last_hidden_states` to `inputs_embeds`.
|
|
|
|
Args:
|
|
input_ids (torch.Tensor): Input token IDs.
|
|
lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None.
|
|
|
|
Raises:
|
|
NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented.
|
|
|
|
Returns:
|
|
torch.Tensor: Prepared input embeddings for the model.
|
|
"""
|
|
assert input_ids.shape[0] == 1
|
|
|
|
|
|
inputs_embeds = self.emb_text(input_ids)
|
|
|
|
|
|
if self.use_speaker_embedding:
|
|
spk_emb_mask = input_ids == self.spk_emb_token_id
|
|
if spk_emb_mask.any():
|
|
assert lm_spk_emb_last_hidden_states is not None
|
|
|
|
lm_spk_emb_last_hidden_states = lm_spk_emb_last_hidden_states.to(self.projector.linear1.weight.dtype)
|
|
projected_spk_emb = self.projector(lm_spk_emb_last_hidden_states)
|
|
projected_spk_emb = F.normalize(projected_spk_emb, p=2, dim=-1)
|
|
apply_spk_emb(
|
|
input_ids=input_ids,
|
|
spk_emb=projected_spk_emb,
|
|
input_embeds=inputs_embeds,
|
|
spk_emb_token_id=self.spk_emb_token_id,
|
|
num_spk_embs=self.num_spk_embs,
|
|
)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return inputs_embeds
|
|
|
|
@torch.inference_mode()
|
|
def prefill_text(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.LongTensor,
|
|
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
|
|
lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
|
|
):
|
|
"""Prefill a chunk of new text tokens in streaming setting.
|
|
Specifically speaking, update `past_key_values` using new text tokens, then the model will read the new text tokens.
|
|
|
|
Args:
|
|
input_ids (Tensor): Tensor of shape [batch_size, seq_len]
|
|
position_ids (LongTensor): Tensor of shape [batch_size, seq_len]
|
|
past_key_values (List[Tuple[Tensor]]): KV Cache of all layers, each layer is a tuple (Tensor, Tensor) denoting keys and values. Each tensor is of seq_len = `self.streaming_text_reserved_len`. `past_key_values` will be updated.
|
|
lm_spk_emb_last_hidden_states (Tensor, optional): Tensor of shape [batch_size, num_spk_emb, llm_dim]. Defaults to None.
|
|
lm_last_hidden_states (Tensor, optional): _description_. Defaults to None.
|
|
|
|
Note that all `batch_size` should be `1`.
|
|
"""
|
|
assert input_ids.shape[0] == 1
|
|
assert past_key_values is not None
|
|
|
|
|
|
inputs_embeds = self.merge_inputs_embeds(
|
|
input_ids=input_ids,
|
|
lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
|
|
)
|
|
|
|
|
|
past_key_values_for_prefill = []
|
|
for i in range(len(past_key_values)):
|
|
past_key_values_for_prefill.append(
|
|
(
|
|
past_key_values[i][0][:, :, : position_ids[:, 0], :].clone(),
|
|
past_key_values[i][1][:, :, : position_ids[:, 0], :].clone(),
|
|
)
|
|
)
|
|
|
|
|
|
outputs_prefill: BaseModelOutputWithPast = self.model(
|
|
attention_mask=None,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values_for_prefill,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=True,
|
|
output_attentions=False,
|
|
cache_position=position_ids,
|
|
)
|
|
|
|
|
|
past_key_values_for_prefill_updated = outputs_prefill.past_key_values
|
|
|
|
|
|
for layer_idx in range(len(past_key_values)):
|
|
|
|
past_key_values[layer_idx][0][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
|
|
past_key_values_for_prefill_updated[layer_idx][0][
|
|
:, :, position_ids[:, 0] : position_ids[:, -1] + 1
|
|
].clone()
|
|
)
|
|
|
|
past_key_values[layer_idx][1][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
|
|
past_key_values_for_prefill_updated[layer_idx][1][
|
|
:, :, position_ids[:, 0] : position_ids[:, -1] + 1
|
|
].clone()
|
|
)
|
|
|
|
|
|
|
|
|
|
return past_key_values
|
|
|
|
@torch.inference_mode()
|
|
def prefill_audio_ids(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
|
|
streaming_tts_text_mask=None,
|
|
add_audio_bos: bool = True,
|
|
):
|
|
"""Prefill a chunk of audio ids to the model. Used in sliding-window long audio generation.
|
|
Specifically, prefill many audio ids (typically from last window) to the model in the new window.
|
|
|
|
Args:
|
|
input_ids (torch.Tensor): (1, seq_len, num_vq) Audio input token ids.
|
|
past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
|
|
"""
|
|
assert input_ids.shape[0] == 1
|
|
assert past_key_values is not None
|
|
|
|
code_emb = [self.emb_code[i](input_ids[:, :, i]) for i in range(self.num_vq)]
|
|
inputs_embeds = torch.stack(code_emb, 3).sum(3)
|
|
input_len = input_ids.shape[1]
|
|
|
|
if add_audio_bos:
|
|
narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
|
|
bos_inputs_embeds = self.emb_text(narrowed_input_ids)
|
|
inputs_embeds = torch.cat([bos_inputs_embeds, inputs_embeds], dim=1)
|
|
input_len += 1
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
position_ids = torch.arange(
|
|
past_key_values_length, past_key_values_length + input_len, dtype=torch.long, device=self.device
|
|
).unsqueeze(0)
|
|
|
|
cache_position = position_ids.clone()
|
|
causal_mask = make_streaming_chunk_mask_generation(
|
|
inputs_embeds=inputs_embeds,
|
|
past_seen_tokens=past_key_values[0][0].shape[2],
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
streaming_reserved_length=self.streaming_text_reserved_len,
|
|
streaming_text_chunk_size=self.streaming_text_chunk_size,
|
|
)
|
|
|
|
|
|
outputs: BaseModelOutputWithPast = self.model(
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=True,
|
|
output_attentions=False,
|
|
cache_position=cache_position,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
return past_key_values
|
|
|
|
@torch.inference_mode()
|
|
def generate(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
|
|
temperature: torch.Tensor,
|
|
eos_token: Union[int, torch.Tensor],
|
|
streaming_tts_text_mask=None,
|
|
force_no_stop=False,
|
|
min_new_token=10,
|
|
max_new_token=50,
|
|
logits_warpers: List[LogitsWarper] = [],
|
|
logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [],
|
|
show_tqdm=False,
|
|
):
|
|
"""Generate audio codes in streaming setting or non-streaming setting.
|
|
Specifically speaking, generate audio codes when not all text tokens are prefilled.
|
|
|
|
Always pass a valid `past_key_values` to the method. The method does not do `prefill` by itself. It relies on `prefill_text` method to provide valid `past_key_values`. Please refer to docstring of this class for more details.
|
|
|
|
In this method, we borrowed a lot of codes from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/gpt.py`.
|
|
|
|
Args:
|
|
input_ids (torch.Tensor): Input token ids.
|
|
past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
|
|
temperature (torch.Tensor): Temperature for sampling.
|
|
eos_token (Union[int, torch.Tensor]): End of sequence token.
|
|
streaming_tts_text_mask (Optional[torch.Tensor], optional): Mask for streaming TTS text. Defaults to None.
|
|
max_new_token (int, optional): Maximum number of new tokens to generate. Defaults to 50.
|
|
logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to [].
|
|
logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to [].
|
|
show_tqdm (bool, optional): Whether to show progress bar. Defaults to True.
|
|
|
|
Returns:
|
|
GenerationOutputs: Generation outputs.
|
|
"""
|
|
|
|
|
|
assert input_ids.shape[0] == 1
|
|
assert past_key_values is not None
|
|
|
|
|
|
|
|
start_idx = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1
|
|
|
|
finish = torch.zeros(input_ids.shape[0], device=input_ids.device).bool()
|
|
|
|
temperature = temperature.unsqueeze(0).expand(input_ids.shape[0], -1).contiguous().view(-1, 1)
|
|
|
|
progress = input_ids.shape[1]
|
|
|
|
|
|
input_ids_buf = torch.zeros(
|
|
input_ids.shape[0],
|
|
progress + max_new_token,
|
|
input_ids.shape[2],
|
|
dtype=input_ids.dtype,
|
|
device=input_ids.device,
|
|
)
|
|
|
|
|
|
input_ids_buf.narrow(1, 0, progress).copy_(input_ids)
|
|
|
|
del input_ids
|
|
input_ids = input_ids_buf.narrow(1, 0, progress)
|
|
|
|
pbar: Optional[tqdm] = None
|
|
if show_tqdm:
|
|
pbar = tqdm(
|
|
total=max_new_token,
|
|
desc="code",
|
|
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}(max) [{elapsed}, {rate_fmt}{postfix}]",
|
|
)
|
|
|
|
condition_length = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1
|
|
|
|
for i in range(max_new_token):
|
|
|
|
audio_bos = False
|
|
|
|
|
|
if progress == condition_length:
|
|
audio_bos = True
|
|
|
|
assert progress == (
|
|
past_key_values[0][0].shape[2] + 1
|
|
)
|
|
|
|
if audio_bos:
|
|
|
|
narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
|
|
inputs_embeds = self.emb_text(narrowed_input_ids)
|
|
del narrowed_input_ids
|
|
else:
|
|
|
|
narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1)
|
|
code_emb = [self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq)]
|
|
inputs_embeds = torch.stack(code_emb, 3).sum(3)
|
|
|
|
position_ids = torch.tensor(
|
|
[past_key_values[0][0].shape[2] + 1], dtype=torch.long, device=self.device
|
|
).unsqueeze(0)
|
|
|
|
cache_position = position_ids.clone()
|
|
|
|
|
|
causal_mask = make_streaming_chunk_mask_generation(
|
|
inputs_embeds=inputs_embeds,
|
|
past_seen_tokens=past_key_values[0][0].shape[2],
|
|
streaming_tts_text_mask=streaming_tts_text_mask,
|
|
streaming_reserved_length=self.streaming_text_reserved_len,
|
|
streaming_text_chunk_size=self.streaming_text_chunk_size,
|
|
)
|
|
|
|
|
|
outputs: BaseModelOutputWithPast = self.model(
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=True,
|
|
output_attentions=False,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
del position_ids
|
|
del inputs_embeds
|
|
del cache_position
|
|
del causal_mask
|
|
|
|
hidden_states = outputs.last_hidden_state
|
|
past_key_values = outputs.past_key_values
|
|
|
|
with P.cached():
|
|
logits = torch.empty(
|
|
hidden_states.size(0),
|
|
hidden_states.size(1),
|
|
self.num_audio_tokens,
|
|
self.num_vq,
|
|
dtype=torch.float,
|
|
device=self.device,
|
|
)
|
|
for num_vq_iter in range(self.num_vq):
|
|
x: torch.Tensor = self.head_code[num_vq_iter](hidden_states)
|
|
logits[..., num_vq_iter] = x
|
|
del x
|
|
|
|
del hidden_states
|
|
|
|
|
|
logits = logits.narrow(1, -1, 1).squeeze_(1).float()
|
|
|
|
|
|
logits = logits.permute(0, 2, 1)
|
|
logits = logits.reshape(-1, logits.size(2))
|
|
|
|
input_ids_sliced = input_ids.narrow(
|
|
1,
|
|
start_idx,
|
|
input_ids.size(1) - start_idx,
|
|
).permute(0, 2, 1)
|
|
logits_token = input_ids_sliced.reshape(
|
|
input_ids_sliced.size(0) * input_ids_sliced.size(1),
|
|
-1,
|
|
).to(self.device)
|
|
del input_ids_sliced
|
|
|
|
logits /= temperature
|
|
|
|
if not audio_bos:
|
|
for logitsProcessors in logits_processors:
|
|
logits = logitsProcessors(logits_token, logits)
|
|
if not audio_bos:
|
|
for logitsWarpers in logits_warpers:
|
|
logits = logitsWarpers(logits_token, logits)
|
|
|
|
del logits_token
|
|
|
|
if i < min_new_token:
|
|
logits[:, eos_token] = -torch.inf
|
|
|
|
if force_no_stop:
|
|
logits[:, eos_token] = -torch.inf
|
|
|
|
scores = F.softmax(logits, dim=-1)
|
|
|
|
del logits
|
|
idx_next = torch.multinomial(scores, num_samples=1)
|
|
|
|
del scores
|
|
|
|
|
|
idx_next = idx_next.view(-1, self.num_vq)
|
|
finish_or = idx_next.eq(eos_token).any(1)
|
|
finish.logical_or_(finish_or)
|
|
|
|
del finish_or
|
|
|
|
input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1))
|
|
|
|
if i == 0 and finish.any():
|
|
|
|
break
|
|
|
|
del idx_next
|
|
progress += 1
|
|
input_ids = input_ids_buf.narrow(1, 0, progress)
|
|
|
|
if finish.all():
|
|
break
|
|
|
|
if pbar is not None:
|
|
pbar.update(1)
|
|
|
|
if pbar is not None:
|
|
pbar.close()
|
|
|
|
if not finish.all():
|
|
if show_tqdm:
|
|
logger.info(f"incomplete result. hit max_new_token: {max_new_token}")
|
|
|
|
del input_ids_buf
|
|
|
|
if finish.all():
|
|
|
|
genrated_input_ids = input_ids[:, condition_length:-1, :]
|
|
else:
|
|
|
|
genrated_input_ids = input_ids[:, condition_length:, :]
|
|
|
|
return ConditionalChatTTSGenerationOutput(
|
|
new_ids=genrated_input_ids,
|
|
audio_input_ids=input_ids,
|
|
past_key_values=past_key_values,
|
|
finished=finish.all(),
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def decode_to_mel_specs(
|
|
self,
|
|
result_list: List[torch.Tensor],
|
|
):
|
|
"""Decode discrete audio codes to mel spectrograms.
|
|
|
|
Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/core.py`
|
|
|
|
Args:
|
|
result_list (List[torch.Tensor]): Audio codes output from `generate`.
|
|
|
|
Returns:
|
|
torch.Tensor: Mel spectrograms.
|
|
"""
|
|
|
|
decoder = self.dvae
|
|
max_x_len = -1
|
|
if len(result_list) == 0:
|
|
return np.array([], dtype=np.float32)
|
|
for result in result_list:
|
|
if result.size(0) > max_x_len:
|
|
max_x_len = result.size(0)
|
|
batch_result = torch.zeros(
|
|
(len(result_list), result_list[0].size(1), max_x_len),
|
|
dtype=result_list[0].dtype,
|
|
device=result_list[0].device,
|
|
)
|
|
for i in range(len(result_list)):
|
|
src = result_list[i]
|
|
batch_result[i].narrow(1, 0, src.size(0)).copy_(src.permute(1, 0))
|
|
del src
|
|
|
|
mel_specs = decoder(batch_result)
|
|
del batch_result
|
|
return mel_specs
|
|
|
|
|
|
|
|
def gen_logits(
|
|
num_code: int,
|
|
top_P=0.7,
|
|
top_K=20,
|
|
repetition_penalty=1.0,
|
|
):
|
|
logits_warpers = []
|
|
if top_P is not None:
|
|
logits_warpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3))
|
|
if top_K is not None:
|
|
logits_warpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3))
|
|
|
|
logits_processors = []
|
|
if repetition_penalty is not None and repetition_penalty != 1:
|
|
logits_processors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, num_code, 16))
|
|
|
|
return logits_warpers, logits_processors
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
past_key_values=None,
|
|
attention_mask=None,
|
|
inputs_embeds=None,
|
|
cache_position=None,
|
|
position_ids=None,
|
|
use_cache=True,
|
|
**kwargs,
|
|
):
|
|
if past_key_values is not None:
|
|
if isinstance(past_key_values, Cache):
|
|
cache_length = past_key_values.get_seq_length()
|
|
past_length = past_key_values.seen_tokens
|
|
else:
|
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
|
|
|
|
|
elif past_length < input_ids.shape[1]:
|
|
input_ids = input_ids[:, past_length:]
|
|
|
|
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
|
|
|
|
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
|
|
|
|
|
if inputs_embeds is not None and cache_position[0] == 0:
|
|
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
|
else:
|
|
|
|
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
|
|
|
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
|
if model_inputs["inputs_embeds"] is not None:
|
|
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
|
device = model_inputs["inputs_embeds"].device
|
|
else:
|
|
batch_size, sequence_length = model_inputs["input_ids"].shape
|
|
device = model_inputs["input_ids"].device
|
|
|
|
dtype = self.lm_head.weight.dtype
|
|
min_dtype = torch.finfo(dtype).min
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask,
|
|
sequence_length=sequence_length,
|
|
target_length=past_key_values.get_max_length(),
|
|
dtype=dtype,
|
|
device=device,
|
|
min_dtype=min_dtype,
|
|
cache_position=cache_position,
|
|
batch_size=batch_size,
|
|
)
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
|
|
"past_key_values": past_key_values,
|
|
"use_cache": use_cache,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|